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[ The father of Projective Geometry 1
Girard Desargues 1593 - 1661 }

.

Grandfather? ( Pappus 300 AD }

AN

.
{ Who else? ( Blaise Pascal 1623 - 1662

o

What next?

unfortuntely,

a clinical death \
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[ Steiner systems }
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Partial spread
LA set of disjoint k-subspaces.]

Blocking set

~
A set of k-subspaces

which are incident to each
t-subspace, t > k.

&

J
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The size of a partial spreads

1-parallelisms - partitions of
 all 1-subspaces into spreads.

é )

Geometric spreads -
~optimal q-covering designs.

Albrecht Beutelspacher 1950 - }
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Hamming and Preparata Codes

The codewords of weight three in the
Hamming code correspond to 1-
dimensional subspaces. The union of
words of weight three in certain
translates of the Preparata code consists
of exactly these codewords. These words
in each such translate corresponds to a
1-spread. Thus, we have a 1-parallelism
for the 1-dimensional subspaces.

~—
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4 )
Rank-metric codes played an
important role in error-correcting
codes for network codes and in error-
correcting codes for network coding.
Comprehensive work, upper bounds on
their size and constructions which
attain these bounds were found.

\—| P. Delsarte 1978, E. M. Gabidulin 1985,
R. M. Roth 1991
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Menger’'s Theorem ‘
Let G = (V,E) be a unit capacity flow networ‘k\
There are k edge disjoint paths in G from s to

t if and only if the maximum value of an s —t
flow in G’ is at least k.

K. Menger 1927 @
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[ For broadcasting }

Edmonds Theorem

In a directed graph G = (V,E) there are k
edge disjoint spanning trees rooted at r € V if
and only if k< C;(r,V \ {1}).

i J. Edmonds 1972 ‘

Maximaizing the multicast rate is an NP-hard
problem with reduction to the Steiner tree problem.

K. Jain, M. Mahdian, M. R. Salavatipour 2003‘
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4 )

Multicast Network

U J

/ A multicast network is a directed acyclic\
graph containing a single source node and a
collection of N destination nodes. The
source node has a set of h messages from
a fixed alphabet and each destination node

\ tries to recover all the messages. /
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4 )

Multicast Network

U J

/ A multicast network is a directed acyclic\
graph containing h source nodes and a
collection of N destination nodes. Each

source node has one message from a fixed
alphabet and each destination node tries to

\ recover all the messages. /
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x,y€e{0,1,...n—1} ‘

computation modulo n

X,y X,y

R. Ahlswede, N. Cai, S.-Y. Li, R. W. Yeung 2000

S.-Y. Li, R. W. Yeung, N. Cai 2003
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" Min-Cut/Max-Flow Theorem
for Multicast Networks

A multicast network is solvable if there )
exist h edge disjoint paths, starting at
the h sources, to each one of the N

\ destination nodes. )

4 . . . )
A multicast network is solvable if the

min-cut to each destination is h.
~—o OO

U J
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" Algebraic Approach
_ for Network Coding

R. Kotter, M. Médard 2003
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(Polynomial Time Algorithm for
_ Solvable Multicast Networks

4 A polynomial time algorithm to find the )
network code of a solvable multicast
network with N receivers. The solution is
. over any field F, such that q > N. )

S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner,
K. Jain, L. M. G. M. Tolhuizen 2005




Network Codes to Subspace Codes



Network Codes to Subspace Codes



Network Codes to Subspace Codes

~

Network nodes independently and randomly
select linear mappings from inputs links onto
outputs links over some field.
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4 A

Random Network Coding

7 )
Network nodes independently and randomly

select linear mappings from inputs links onto
outputs links over some field.

N A

T. Ho, M. Medard, R. Kotter, D. R. Karger, M.
Effros, J. Shi, B. Leong 2006
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[ The Operator Channel ]

J
Subspace codes for error-correction
in random network coding.

R. Kotter, and F. Kschischang, 2008
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[ Lifted Rank-Metric Codes }

/Lar'ge constant dimension codes can
be constructed by lifting rank-metric
codes, especially maximum rank

\distance (MRD) codes. y

D. Silva, F. Kschischang, R. Kotter 2008
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" Metrics for Error-Correcting :

Network Codes

4 )
Which metric to use: rank distance,

subspace distance, or injection distance.
- J

D. Silva, F. Kschischang 2009




Codes and Designs Over GF(q)




Codes and Designs Over GF(q)




Codes and Designs Over GF(q)

4 )
Basic bounds, linear programming,

Kcyclic codes, perfect codes.




Codes and Designs Over GF(q)

4 )
Basic bounds, linear programming,

Kcyclic codes, perfect codes.

Constant dimension codes and
general subspace codes.




Codes and Designs Over GF(q)

2N

( ° °
Error-correcting codes in the
projective space )

4 )
Basic bounds, linear programming,

cyclic codes, perfect codes.
-

N

Constant dimension codes and
general subspace codes.

T. E. and A. Vardy 2008, 2011
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[ Basic bounds and constructions

for covering designs over GF(q). )

T. E. and A. Vardy 2011
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4 . )
Subspace Codes via Ferrers

Diagram and Rank-Metric Codes

4 . )
Representation of subspaces,

Ferrers diagram rank-metric

_codes, punctured codes.

J

T. E. and N. Silberstein 2009
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4 )
Codes based on Lifted MRD Codes
U 4

/. )
The lifted MRD codes are viewed as designs,

bounds and constructions for codes which

\com‘ain the related lifted MRD code. )

T. E. and N. Silberstein 2011, 2013
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[ Cyclic Orbit Codes ]

Properties of Grassmannian codes which

are defined as orbits of a subgroup of the
general linear group.

A.-L. Trautmann, F. Manganiello,
M. Braun, J. Rosenthal 2013
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4 )
New constructions (upper bounds),

\mainly ones based on lifted MRD codes.

J

T. E. 2014
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Fa - vector space of dimension n over F, (= GF(q) ).

G,(n, k) is the set of all k-dimensional
subspaces of Fy (the Grassmannian).
Gaussian coefficients (q-binomial coefficient)

[n] =(qn_l)(qn—l_l)m(qn—k+1_1)
klg™ ™ @)@ -1)-@D




- vector space of dimension n over F, (= GF(q) ).

G,(n, k) is the set of all k-dimensional
subspaces of Fy (the Grassmannian).

The Grassmannian

Gaussian coefficients (q-binomial coefficient)

[n] (qn 1)(qn 1 1) (qn k+1 1)
(q*-1)(q*1-1)-(q-1)
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Codes and Designs Over GF(q)

Castle Meeting on Coding
Theory and Applications,
Cardona, Spain 2011
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Asymptotic Behavior

CA(n) ~B(n) if im*™/, . =1 asn - oo.>

Theorem

If q, k, and t are fixed integers with 0 <t <k, q a
prime power, then the size P(t,k,n) (the largest size
of a set with k-subspaces (blocks) of an n-space N
such that each t-subspace of N appears in exactly
one block) satisfies

P(t k,n) ~ [t]‘/k
4,

S.Blackburn, T. E. 2012
Same result for covering.

as n —» o,
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Theorem (A g-Steiner system S(1,k,n), ( >
exists if and only if k divides n. Spread

Proof a primitive in GF(q"))
5 CI" —1 a” is primitive in the
TT g —1 subfield GF(q*) of GF(q™)

0, at, ', a't?", .., a”(zk‘z)’"}, 0<i<r-1,
are closed under addition
in GF(q™) = subspaces = S(1,k,n),
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4 )

Ascona 2012

p
M. Braun, T. E., P. f)stergé’\rd,L Bergen 2013 J
A. Vardy, A. Wassermann, 2013
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Four Years of the COST Action
apr'lmmve in GF(213)
_ {0 all alz alg al4’ a‘S,a‘6,a‘7} ]

CYClIC sh|f1'

aV = {0 al1+1 al2+1 al3+1’ ai4+1’ al5+1’ al6+1’ al7+1} ]

[Fr'obenius map] [ F(V) = {0, a?i gq?iz gq2is q2is q2is g2ie az'i7} ]

‘ Gnor'malizer' of Singer subgroup automoprphism )

: 1 597 245
(15 represemames) 3-dimensional subspaces




Four Years of the COST Action




Four Years of the COST Action



Four Years of the COST Action
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4 )
Derived and residual

subspace designs.

N\

J
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[ Desighs Over Vector Spaces J

-

Ghent 2013

U

-

G

N
Derived and residual

subspace designs.

M. Kiermaier and R. Laue 2015
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M. Braun, M. Kiermaier, N. Naki¢ 2015
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{ Fano Plane J [Ghent 2013]

If a 2-Fano plane exists it does not have

a large automorphism group.
\— |/

M. Braun, M. Kiermaier, N. Naki¢ 2015
p
The structure of the

of the | | stanbul 2015
\q-Fano plane if exists.
T. E. 2015

\
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[ Rank-Metric Codes J

[Bordeux 2014] [Palmela 2014]

4 . . )
Constructions of Ferrers diagram

rank-metric codes and a related
Anticode bound.

T. E., E. Gorla, A. Ravagnani, A. Wachter-Zeh 2014
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{ New Codes J
'Bordeux 2014 || ALCOMA 2015

~

/Lar'ge constant dimension codes
of length 6 and length 8 over
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‘Bounds on the Alphabet size for a given
_number h of messages and N receivers.

Does there exist a multicast network with
two messages in which vector network
coding outperforms scalar network coding?

/ Is there a multicast network in which \
exactly h edge disjoint paths are used to
each receiver, and vector network coding
outperforms scalar network coding.
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[Find new q-Steiner sys'rems.]

Prove the nonexistence of some
currently possible q-Steiner systems.
Does there exists q-Steiner
system $(2,3,7), (q-Fano plane).

Improve the bounds on the
sizes of partial spreads.
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[Constructions for large cyclic codes ]

New constructions and bounds on
subspaces codes which are not
constant dimension codes.

Prove that current upper bounds are
asymptotically optimal for new parameters.

(Find new applications for subspace codes.)
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