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Subspace Coding
The constant-dimension case

Definition
A q-ary (v ,M, d ; k) (constant-dimension) subspace code is a set
C of k -dimensional subspaces of a v -dimensional vector space
over Fq with size #C = M and minimum subspace distance
ds(C) := min{ds(X ,Y );X ,Y ∈ C,X 6= Y} = d .

Subspace metric
ds(X ,Y ) = dim(X + Y )− dim(X ∩ Y ) = 2k − 2 dim(X ∩ Y )

Geometric meaning
d = 2δ ∈ 2Z, and t = k − δ + 1 is the smallest positive integer
such that any t-dimensional subspace of V (or t − 1-flat of
PG(V ) ∼= PG(v − 1,Fq)) is covered by/contained in/incident with
at most one member of C.

Main Problem
For a given prime power q > 1 and given positive integers v , δ, k
with 2 ≤ δ ≤ k ≤ v/2 determine the maximum size
M = Aq(v , 2δ; k) of a q-ary (v ,M, 2δ; k) subspace code.
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The Case k = 3, d = 4
Plane subspace codes

The “easiest” “nontrivial” case
A q-ary (v ,M, 4; 3) subspace code is a set of M distinct planes in
PG(V ) ∼= PG(v − 1,Fq) mutually intersecting in at most a point
(covering every line at most once).

Known exact results

1 Aq(5, 4; 3) = q3 + 1 (, max. partial line spreads in PG(4,Fq))

2 A2(6, 4; 3) = 77 (5 isomorphism types)

3 A2(13, 4; 3) = 1 597 245 (many isomorphism types)

The (13, 1 597 245, 4; 3) codes in Case (3) form an exact line
cover in PG(12,F2) (2-analog of a Steiner triple system on 13
points) and are invariant under the normalizer of a Singer group
of PG(12,F2), which has order (213 − 1)× 13 = 106 483.

It is not known whether an exact line cover (consisting of planes)
in PG(6,F2) (2-analog of the Fano plane) or in PG(8,F2)
(2-analog of the affine plane of order 3) exists.
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Known Upper Bounds for Aq(v , 4; 3)

Packing bound

#C ≤
total no. of lines

no. of lines in a plane
=

(qv − 1)(qv−1 − 1)
(q3 − 1)(q2 − 1)

with equality iff C forms an exact line cover (q-analog of a Steiner
triple system on v points).

Best known upper bound

#C ≤







⌊

(qv−1)(qv−1−1)
(q3−1)(q2−1)

⌋

if v ≡ 1 (mod 2),
⌊

qv−1
q3−1

(

qv−1−q
q2−1 − q + 1

)⌋

if v ≡ 0 (mod 2),

=











(q3 + 1)2 if v = 6,

q8 + q6 + q5 + q4 + q3 + q2 + 1 if v = 7,

q2v−6 + q2v−8 + q2v−9 + · · · if v ≥ 8.

A necessary condition for the existence of an exact cover is
v ≡ 1, 3 (mod 6) (independently of q).
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Known Lower Bounds for Aq(v , 4; 3)
Mostly arising from constructions

• Aq(6, 4; 3) ≥ q6 + 2q2 + 2q + 1 for q ≥ 3 ;

• A2(7, 4; 3) ≥ 333, A3(7, 4; 3) ≥ 6977, and
Aq(7, 4; 3) ≥ q8 + q5 + q4 + q2 − q for general q;

• Aq(v , 4; 3) ≥ q2v−6 +
[

v−3
2

]

q
= q2v−6 + q2v−10 + · · ·

for q large enough (LMRD code bound, constructive);

• Aq(v , 4; 3) ∼
(qv−1)(qv−1−1)
(q3−1)(q2−1)

for v large enough (packing bound, non-constructive).

The binary case
v 6 7 8 9 10 11

LMRD 71 291 1179 4747 19051 76331
EA+Ext 77 329 1259 5014 20517 79306

best known 77 333 1326 5986 23870 97526
upper bound 77 381 1493 6205 24698 99718

EA+Ext Expurgation-Augmentation plus further extension by
planes meeting the special flat S in a line
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The Echelon-FERRERS Construction
The Echelon-Ferrers Multilevel Construction and its refinements
(T. Etzion, N. Silberstein, J. Rosenthal, A. Horlemann-Trautmann)
provides the best known lower bound for subspace codes with
general parameters.

Idea (for the plane case)
Take

C =





1 0 0 ∗ . . . ∗
0 1 0 ∗ . . . ∗
0 0 1 ∗ . . . ∗



 ⊎





1 ∗ ∗ 0 0 ∗ . . . ∗
0 0 0 1 0 ∗ . . . ∗
0 0 0 0 1 ∗ . . . ∗



 ⊎ · · ·

with the maximum number of planes from each Schubert cell.
=⇒ #C = 22(v−3) + 22(v−5) + · · · in the binary case.

LMRD code bound

#C ≤ 22(v−3) +

[

v − 3
2

]

2
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Main Theorem (Ai-H.-Liu, 2016)

(i) For v ≡ 7 (mod 8), there exists a Σv -invariant (v ,M, 4; 3)2

subspace code with

M ≥ 22(v−3) +
9
8

[

v − 3
2

]

2

,

and consequently we have A2(v , 4; 3) ≥ 22(v−3) + 9
8

[

v−3
2

]

2
in

this case.

(ii) For v ≡ 3 (mod 8), v ≥ 11, there exists a Σv -invariant

(v ,M, 4; 3)2 subspace code with

M ≥ 22(v−3) +
81
64

[

v − 3
2

]

2

,

and consequently we have A2(v , 4; 3) ≥ 22(v−3) + 81
64

[

v−3
2

]

2
in

this case.
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Maximum Net Gain Computations

v n #G-orbits N1 (N1)LMRD #C W

7 4 1 3 2.33 28 + 45 〈1, α, α2〉

8 5 1 3 5.00 210 + 93 〈1, α, α2〉

9 6 7 12 10.33 212 + 756 〈1, α, α2〉

10 7 15 20 21.00 214 + 2540 〈1, α, α22〉

11 8 53 54 42.33 216 + 13770 〈1, α17, α34〉

12 9 177 93 85.00 218 + 47523 〈1, α3, α71〉

13 10 633 234 170.33 220 + 239382 〈1, α, α49〉

14 11 513 379 341.00 222 + 775813 〈1, α3, α419〉

15 12 34 924 682.33 224 + 3783708 〈1, α195, α1170〉

16 13 240 1526 1365.00 226 + 12499466 〈1, α25, α1208〉

N1 local max. net gain of the EA method

(N1)LMRD local max. net gain equivalent of the LMRD code bound
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Coordinate-Free Represenation
From now on we restrict ourselves to k = 3, d = 4, q = 2.

Ambient space
V = W × F2n , where n = v − 3 and W is a 3-dimensional
F2-subspace of F2n (plane of PG(n − 1,F2))

Gabidulin MRD codes
G = {x 7→ a0x + a1x2; a0, a1 ∈ F2n} ⊂ Hom(W ,F2n )
(for n ≥ 6 this definition depends on the choice of W )

Lifted Gabidulin LMRD codes
L = set of all graphs (in the sense of Real Analysis) Γf , f ∈ G; i.e.,

G(a0, a1) =
{

(x , a0x + a1x2); x ∈ W
}

⊂ W × F2n

Lines covered by G(a0, a1)
These have the form Γg , where g is the restriction of a0x + a1x2 to
a 2-dimensional subspace Z ⊂ W , and are disjoint from the
special flat

S = {0} × F2n ∼= PG(n − 1,F2).
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The LMRD Code Bound
Valid for any subspace code C containing an LMRD code

Observation
The planes in L (more generally, the planes in any lifted MRD
code with the same parameters as G) form an exact cover of the
set of lines of PG(v − 1,F2) disjoint from S.

=⇒ No plane meeting S in a point can be added to L without
decreasing the minimum subspace distance (since such planes
contain lines disjoint from S, hence leading to a multiple cover of
some line).

=⇒ #C ≤ #L+ no. of lines in S = 22v−6 +

[

v − 3
2

]

2

for any subspace code C ⊇ L.

Can the bound be reached?
For this the lines L ⊂ S must be matched to planes E ⊃ L in such
a way that planes meeting in S (i.e., the corresponding lines
meet) have no point outside S in common.

The answer is yes for v ≤ 11 and probably in general.
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Expurgation-Augmentation

The basic idea
Removing M1 planes from L (“expurgating” L) “frees” 7M1 lines
disjoint from the special flat S. It is at least conceivable that the
free lines can be rearranged, 4 lines at a time, into 7M1/4 new
planes meeting S in a point.

Adding these planes to the expurgated LMRD code (“augmenting”
the code) then produces a new subspace code C of size

#C = #L+ 3M1/4 > #L.

If we are “lucky”, the new planes do not introduce a multiple cover
of some line meeting S in a point.

If we are even more “lucky”, the additional number of planes
meeting S in a line that can be added to the code does not
decrease (or decreases only slightly).
=⇒ C improves on L.
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After some further work
There exists a distinguished 3-dimensional subspace T ⊂ G, viz.

T = {wx2 + w2x ;w ∈ W},

such that the corresponding 8 planes Γf , f ∈ T , have the desired
property.

The 14 new planes obtained by rearranging the 8 × 7 lines in Γf

are
E = E(Z ,P, g) =

{

(x , g(x) + y); x ∈ Z , y ∈ P
}

,

where Z = 〈a, b〉 ⊂ W is 2-dimensional (7 choices),
g(x) = cx2 + c2x with c ∈ W/Z (2 choices) and
P = F2(ab2 + a2b) (the intersection point of E and S).

Net gain: 14 − 8 = 6 planes

Example (v = 6)
One of the five optimal (6, 77, 4; 3) codes can be constructed in
this way without using a computer. In this case V = F8 × F8 (i.e.
W = F8) and T = {wx2 + w2x ;w ∈ F8}.
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Refinements for v = 7
For v = 7 the ambient space can be taken as V = W × F16, with
W the trace-zero subspace of F16.

1 Remove several additive cosets of T in G (maximum 2
cosets, netgain 12 planes).

2 Remove pairwise disjoint “rotated” cosets r(T + f ), f ∈ G,
r ∈ F

×
16 (maximum 4 cosets, netgain 24 planes)

3 Remove all #F
×
16 = 15 rotations of the special coset

T + cx2 + c2x , TrF16/F2
(c) = 1, but drop the requirement of

exact rearrangement of the free lines (net gain
15 × 11 − 15 × 8 = 45 planes)

Why is Method (3) so much better?

• The expurgated code is invariant under the group Σv of all
collinations (x , y) 7→ (x , ry), r ∈ F

×
16 (acting as a Singer

group on PG(S) ∼= PG(3,F2)). =⇒ Simplification

• Surprisingly (at that time) as much as 11 out of 14 candidate
new planes could be added through each point of S.
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A Strange Invariant
determining the collision graph at a point of S

Collision graph
Vertices: the 14 new planes E through a fixed point of S, say
P1 = F2(0, 1) ∈ W × F16.
Edges: E1 and E2 are adjacent if they have a line through P1 (or a
point outside S) in common.

In the case v = 7 the graph turned out to consist of a K4 and 10
isolated vertices (=⇒ independence number 11).

δ-invariant (last Dickson invariant)
Represent PG(n − 1,Fq) as PG(Fqn/Fq). For any Fq-subspace U

define the point δ(U) as the product of all points in U.

Note that for a line Z = 〈a, b〉 = {a, b, a + b} ∈ PG(n − 1,F2) we
have δ(Z ) = ab(a + b) = ab2 + a2b =

∣

∣

a b
a2 b2

∣

∣.

σ-invariant
For a plane E in PG(Fqn/Fq) intersecting W in a line Z define
σ(E) = δ(E)/δ(Z )q+1.
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Theorem
1 The 14 new planes through P1 have the form E(Z ,P1, g)

with Z = 〈a, b〉 ⊂ W = 〈a, b, c〉 ⊂ F16 = 〈a, b, c, d〉 and

g(x) =
(d + µc)x2 + (d + µc)2x

ab2 + a2b
, µ ∈ F2.

E(Z ,P1, g) 7→ Z + Fq(d + µc) gives a parametrization of
these new planes by the 14 planes E 6= W in

PG(S) ∼= PG(3,F2).

2 Two new planes E(Z ,P1, g), E(Z ′,P1, g
′) collide if and only if

their corresponding planes E, E ′ have the same σ-invariant.

Theorem (explicit computation of σ(E) for n = 4)
For a plane E = aW 6= W of PG(F16/F2) we have

σ(E) = a + a2 + a3 + a4.

A further analysis shows that E 7→ σ(E) takes the value F2 = F21
precisely 4 times (on the planes of the form a3W ) and is
one-to-one on the complementary set of 10 planes.
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The Case v > 7
or n = dim(S) = v − 3 > 4

Parallels
The number of new planes meeting S in P1 that can be added to
the expurgated code (independence number of the collision
graph) still equals the number of values taken by the σ-invariant.

Changes

• Dependence on the plane orbit of W in
PG(F2n/F2) ∼= PG(n − 1,F2) (under the Singer+Frobenius
action)
=⇒ Exponential growth

• No explicit formula for the σ-invariant

• There are 2n−3 − 1 cosets T + cx2 + c2x , c ∈ F2n \ W
suitable for removal. Any combination has to be considered.
=⇒ Doubly exponential growth
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For a plane orbit [W ] let T1, . . . ,Tm (m = 2n−3 − 1) be the solids in
PG(F2n/F2) above W and F

×
2n = {y1, . . . , y2n−1}. Define an

integral m × (2n − 1) matrix MW = (mij) by

mij = #{E ∈ Ti ;E 6= W ∧ σ(E) = yj}.

Combinatorial optimization problem
Determine the max. local net gain

N1 = max
[W ]

max
x∈{0,1}m

(

wHam(xMW )− 8wHam(x)
)

.

Example (v = 8)
In this case n = 5 and the

[5
3

]

2
= 155 planes in PG(F32/F2) form

a single Singer+Frobenius orbit.
Representing F32 as F2[α] with α5 + α2 + 1 = 0, we get

M =





2 2 2 1 . . . 1 0 . . . 0 0 . . . 0 0 0 0 0
2 2 2 0 . . . 0 1 . . . 1 0 . . . 0 0 0 0 0
2 2 2 0 . . . 0 0 . . . 0 1 . . . 1 0 0 0 0



 ∈ Z
3×31

with α23, α25, α28 as the first 3 column labels. =⇒ N1 = 3
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Experimental Study
using SAGE (www.sagemath.org)

v 7 8 9 10 11
n 4 5 6 7 8

N1 3 3 12 20 ≥ 44
(N1)LMRD 2.33 5 10.33 21 42.33

N1 Local max. net gain of the EA method

(N1)LMRD Local net gain required to equalize the LMRD code
bound

Notes
• Algorithm used: Essentially exhaustive search through all

Singer+Frobenius orbits and coset combinations. (For n = 8
there are 53 orbits and 225−1 − 1 = 231 − 1 coset
combinations.

• C can be further extended by planes meeting S in a line, but
computing maximal such extensions is not feasible.



Constant-
Dimension

Codes
Exceeding the
LMRD Code

Bound

Thomas
Honold

Plane
Subspace
Codes

New Results

The LMRD
Code
Bound—A
Geometric
View

The
Expurgation-
Augmentation
(EA) Method

Subspace
Polynomials
and Dickson
Invariants

Continuation
of the Analysis

Proof of the
Main Theorem

Open
Problems

Outline

1 Plane Subspace Codes

2 New Results

3 The LMRD Code Bound—A Geometric View

4 The Expurgation-Augmentation (EA) Method

5 Subspace Polynomials and Dickson Invariants

6 Continuation of the Analysis

7 Proof of the Main Theorem

8 Open Problems

9 References



Constant-
Dimension

Codes
Exceeding the
LMRD Code

Bound

Thomas
Honold

Plane
Subspace
Codes

New Results

The LMRD
Code
Bound—A
Geometric
View

The
Expurgation-
Augmentation
(EA) Method

Subspace
Polynomials
and Dickson
Invariants

Continuation
of the Analysis

Proof of the
Main Theorem

Open
Problems

MOORE’s Identity . . .
2-Analog of the Vandermonde determinant evaluation

δ(X1, . . . ,Xk ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

X1 X2 . . . Xk

X2
1 X2

2 . . . X2
k

X22

1 X22

2 . . . X22

k
...

...
...

X2k−1

1 X2k−1

2 . . . X2k−1

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

λ∈F
k
2\{0}

(λ1X1 + · · ·+ λk Xk ) in F2[X1, . . . ,Xk ].

Moore’s Identity can be proved by induction on k , using

δ(X1, . . . ,Xk ) = δ(X1, . . . ,Xk−1)
∏

λ∈F
k−1
2

(Xk +λ1X1 + · · ·+λk−1Xk−1)

(1)
(in virtually the same way as Vandermonde’s Identity).
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. . . Leading to Subspace Polynomials
Suppose U is a k -dimensional F2-subspace of Fn

2 with basis
β1, . . . , βk

=⇒
∏

u∈U

(X + u) =
∏

λ∈F
k
2

(X + λ1β1 + · · ·+ λkβk )

=
δ(β1, . . . , βk ,X)

δ(β1, . . . , βk )
=

k
∑

i=0

aiX
2i

∈ F2n [X ].

Definition
The subspace polynomial of U is defined as
sU(X) =

∏

u∈U(X + u).

Properties

• By unique factorization, U is determined by sU(X).

• sU(X) is a monic, separable (i.e., a0 6= 0), linearized
polynomial in F2n [X ] of symbolic degree k = dim U.

• Conversely, a polynomial with these properties is a subspace
polynomial of U ⊆ F2n iff it splits into linear factors in F2n [X ].



Constant-
Dimension

Codes
Exceeding the
LMRD Code

Bound

Thomas
Honold

Plane
Subspace
Codes

New Results

The LMRD
Code
Bound—A
Geometric
View

The
Expurgation-
Augmentation
(EA) Method

Subspace
Polynomials
and Dickson
Invariants

Continuation
of the Analysis

Proof of the
Main Theorem

Open
Problems

DICKSON Invariants
Definition (from Modular Invariant Theory)
The coefficients of the generic subspace polynomial
∏

(X + λ1X1 + · · ·+ λk Xk ) are called Dickson invariants and
denoted by δ

(k)
i (X1, . . . ,Xk ), 1 ≤ i ≤ k . The indexing is mutatis

mutandis the same as for the elementary symmetric polynomials.

Theorem (Dickson)
The ring of GL(k ,F2)-invariants in F2[X1, . . . ,Xk ] is freely
generated by δk

i , 1 ≤ i ≤ k.

Important Consequence
The “Dickson invariant” δi(U) = δ

(k)
i (β1, · · ·βk ) is well-defined, and

sU(X) = X2k

+ δ1(U)X2k−1 + · · ·+ δk−1(U)X2 + δk (U)X .

For our purposes the most important of these invariants is the last

Dickson invariant
δ(U) = δk (U) =

∏

u∈U

u.
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Examples

Point Polynomials
sP(X) = X(X + a) = X2 + aX

for any point P = F2a in PG(F2n/F2) ∼= PG(n − 1,F2)

Line Polynomials
For lines L = 〈a, b〉 = {a, b, a + b} in PG(F2n/F2) we have

sL(X) =
(

X2 + (b2 + ab)X
)

◦ (X2 + aX)

= (X2 + aX)2 + (b2 + ab)(X2 + aX)

= X4 + (a2 + ab + b2)X2 + (ab2 + a2b)X

=⇒ δ1(L) = a2 + ab + b2, δ2(L) = δ(L) = ab2 + a2b = ab(a + b).
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Examples (cont’d)

Subspace polynomials in PG(F16/F2) ∼= PG(3,F2)

Plane polynomials:

W0 = {x ∈ F16;Tr(x) = 0}: sW0(X) = X8 + X4 + X2 + X

W = rW0, r ∈ F
×
16: sW (X) = X8 + r4X4 + r6X2 + r7X

Line polynomials:

Write F
×
16 = 〈ξ〉, F×

4 = 〈ω〉 with ω = ξ5.
There are 2 Singer+Frobenius line orbits, [F4] and [L0],
L) = ξ10〈1, ξ〉, with sizes 5, 30 and line polynnomials

sF4 [X ] = X4 + X . sL0(X) = X4 + X2 + ωX ,

respectively. The remaining line polynomials are determined from
srL(X) = X4 + r2a1X2 + r3a0X , sL2(X) = X4 + a2

1X2 + a2
0X .
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ORE’s Work
On a Special Class of Polynomials, TAMS 35(1933)

The ring of 2-polynomials
With respect to composition a(X) ◦ b(X) = a

(

b(X)
)

(“symbolic
multiplication”), the 2-polynomials in F2n [X ] form a ring Ln. Via
X2i

7→ Y i , the ring Ln is isomorphic to the skew polynomial ring
F2n [Y ;φ] with φ(a) = a2.

The linear map view of 2-polynomials
End(F2n/F2) ∼= Ln/(X

2n

+ X) ∼= F2[Y ;φ]/(Y n + 1).

Three subspaces associated with U

U⊥ The orthogonal subspace of U with respect to the trace
bilinear form (x , y) 7→ Tr(xy).

U◦ The opposite subspace of U, defined by
sU(X) ◦ sU◦(X) = sU◦(X) ◦ sU(X) = X2n

+ X .

U∗ The adjoint subspace of U, which may be defined as the
subspace

〈

δ(V )/δ(U);V ⊆ U a hyperplane
〉

.
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Key Facts
Implicit in Ore’s work

Relation between U⊥, U◦, U∗

(U∗)2 = (U◦)⊥

Theorem
Let U be a k-subspace of F2n .

1 V 7→ δ(V ) maps the (k + 1)-subspaces of F2n containing U

bijectively onto the 1-subspaces of the space δ(U)U◦. The
induced map from PG(F2n)/U to PG

(

δ(U)U◦) is a

collineation.

2 V 7→ δ(V ) maps the (k − 1)-subspaces of F2n contained in U

bijectively onto the 1-subspaces of δ(U)U∗. The induced

map from PG(U) to PG
(

δ(U)U∗
)

is a correlation.

Sketch of proof.
For Part (1) use δ(V ) = sU(x)δ(U) for any β satisfying
V = U + F2x , together with U◦ = Im

(

x 7→ sU(x)
)

. For Part (2) the
roles of U, V are reversed.
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A Nice Application to Subspace Codes

Corollary
The k-subspaces U ⊆ F2v with fixed last Dickson invariant

δ(U) = a, a ∈ F
×
2v , form a subspace code C(a) with minimum

distance at least 4.

Notes
• By the corollary, the set of k -subspaces of Fv

2 is partitioned
into 2v − 1 (possibly empty) subspace codes of minimum
distance ≥ 4. Viewed as single codes, these are not very
interesting, since they are too small. In the case k = 3 the
largest of these codes has guaranteed size

#C(a) ≥
1

2v − 1

[

v

3

]

2

=
(2v−1 − 1)(2v−2 − 1)

21
≈

8
21

×#G.

• Compare the corollary with the Gap Theorem in Ben-Sasson
et al. 2014.
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The Collision Space
Theorem
The set of multiple values of σW (E) = δ(E)/δ(Z )3, Z = E ∩ W, is

precisely the (n − 3)-dimensional subspace (W 2)⊥.

Sketch of proof.
For each of the 7 lines (2-dimensional subspaces) Z ⊂ W ,
E 7→ σW (E) maps the planes E ⊃ Z bijectively to the points in
δ(Z )−2Z ◦, a space of dimension n − 2. Using (Z ∗)2 = (Z ◦)⊥, one
can show that δ(Z )−2Z ◦ = (Z 2)⊥.

=⇒ (W 2)⊥ =
⋂

Z⊂W

δ(Z )−2Z ◦.

=⇒ The points in (W 2)⊥ (outside (W 2)⊥) have multiplicity 7
(resp., 1), except for the 7 missing values δ(W )/δ(Z )3.

Definition
The space CW = (W 2)⊥ ⊂ F2n is called collision space and the
corresponding m × m submatrix CW of MW collision matrix
(relative to W ).
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Simplified optimization problem
Determine the max. local net gain N1 as the optimal solution of

Maximize
∑m

i=1(6 − ri)xi + wHam(xCW )
subject to x ∈ {0, 1}m,

(2)

where r1, . . . , rm denote the row sums of CW .

Example (v = 9)
There are 7 plane orbits [W ] in PG(F64/F2) with collision matrices













1 1 2 1 2 0 1
1 1 0 1 0 0 1
1 1 0 1 0 0 1
1 1 0 1 0 0 1
1 1 0 1 0 0 1
1 1 2 1 2 0 1
1 1 2 1 2 4 1













,













0 0 1 1 1 1 2
2 2 1 1 1 1 0
0 0 1 1 1 1 0
2 0 1 1 1 1 0
0 2 1 1 1 1 0
2 0 1 1 1 1 2
0 2 1 1 1 1 2













,













2 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1
2 1 1 1 1 1 1
2 1 1 1 1 1 1
0 1 1 1 1 1 1
0 1 1 1 1 1 1













,













1 2 1 1 0 1 1
1 0 1 1 2 1 1
1 0 1 1 0 1 1
1 0 1 1 2 1 1
1 0 1 1 0 1 1
1 2 1 1 2 1 1
1 2 1 1 0 1 1













,













2 0 0 1 2 1 0
2 0 2 1 0 1 2
2 2 0 1 0 1 0
0 0 0 1 0 1 2
0 2 2 1 0 1 0
0 2 0 1 2 1 2
0 0 2 1 2 1 0













,













1 1 0 0 1 0 0
1 1 2 2 1 0 2
1 1 0 0 1 0 0
1 1 2 2 1 0 2
1 1 0 0 1 0 0
1 1 2 2 1 0 2
1 1 0 0 1 4 0













,













0 2 0 2 0 2 0
2 0 0 2 2 0 0
0 0 2 2 0 0 2
2 0 0 0 0 2 2
0 0 2 0 2 2 0
2 2 2 0 0 0 0
0 2 0 0 2 0 2













. =⇒ N1 = 12
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Properties of Collision Matrices

1 Only columns of type 17, 23 or 41 can occur. More precisely,
a column labeled with y ∈ (W 2)⊥ has type 17 if y is not a
missing value of σW (i.e., y 6= δ(W )/δ(Z )3 for all lines
Z ⊂ W ), type 23 if y is a missing value of multiplicity 1 (i.e.,
y = δ(W )/δ(Z )3 for exactly one line Z ⊂ W ), and type 41 if y

is a missing value of multiplicity 3 (i.e., y = δ(W )/δ(Z )3 for
three lines Z ⊂ W ). Moreover, Type 41 does not occur if n is
odd, and occurs at most once as a column of CW if n is even.

17 if y is not a missing value of σW ,
23 if y is a missing value of multiplicity 1,
41 if y is a missing value of multiplicity 3.

(The multiplicity is the number of lines Z ⊂ W with
y = δ(W )/δ(Z )3.)

2 The support of each column is a subspace of F2n/W .

3 All row sums have the same parity, equal to the parity of the
number of columns of type 17.
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Properties of Collision Matrices (Cont’d)

4 The row sum spectrum of CW can be computed from the
geometric configuration formed by the multiset of µ ≤ 7
missing points of σW contained in (W 2)⊥ (in terms of the
weight distribution of the associated binary linear [µ, k ]
code).

5 Plane orbits [W ] with a column of type 41 in CW

(equivalently, with a missing point in (W 2)⊥ of multiplicity 3)
can be characterized algebraically: They occur iff n is even
and are represented by W = 〈1, a, b〉 with a, b satisfying
b2 + b = ω(a2 + a), where ω is a generator of F4 ⊆ F2n . The
missing points in this case are 1 (of multiplicity 3) and
(b + ωa + x)−3 for x ∈ F4 (of multiplicity 1).
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Proof of the Main Theorem

Idea.
Choose W as the trace-zero plane of the subfield F16 ⊆ F2n .
=⇒ CW is of the type discussed in Property 5 above. The missing
points are 1 (of multiplicity 3) and the primitive 5th roots of unity in
F16.

Case 1: n ≡ 4 (mod 8)
In this case (W 2)⊥ ∩ F16 = F2

=⇒ 1 is the only missing point contained in (W 2)⊥.
=⇒ CW has row sums 4 and 10 with corresponding frequencies
f4 = 2n−4, f10 = 2n−4 − 1.
This leads to the stated lower bound for the max. (global) net gain.

Case 2: n ≡ 0 (mod 8)
In this case F16 ⊂ (W 2)⊥, so that (W 2)⊥ contains all
3 + 1 + 1 + 1 + 1 = 7 missing points.
The proof is similar to that in Case 1 but more difficult. One can
show that N1 ≥ 2n−8 × 54 using n = 8 as an “anchor”.
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Open Problems/Future Work

• We conjecture that the main theorem remains true for all
lengths v ≥ 7, v 6= 8, 10. Prove this conjecture!
For the yet unsettled case v ≡ 1 (mod 4), or n ≡ 2 (mod 4),
there is overwhelming computational evidence for the truth.
(Here it suffices to exhibit a plane W = 〈1, a, b〉 of the type
considered in Case 1 of the proof.)

• Use Expurgation-Augmentation with non-Gabidulin MRD
codes.

• Investigate non-standard rearrangements of free lines into
new planes.

• Determine the structure of the set of free planes of C
meeting S in a line, and use this structure to solve the
extension problem efficiently.

• Generalize Expurgation-Augmentation to constant
dimensions k > 3.
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