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Introduction

o Codes achieving the Singleton bound for rank metric are
called MRD (mazimum rank distance) codes .

e Known since 1978 (Delsarte)/1985 (Gabidulin): General

construction for MRD codes for any set of parameters.
= Gabidulin codes
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Codes achieving the Singleton bound for rank metric are
called MRD (mazimum rank distance) codes .

Known since 1978 (Delsarte) /1985 (Gabidulin): General
construction for MRD codes for any set of parameters.
= Gabidulin codes

Until 2 years ago no really different general construction
was known. Now few new results.

In the smallest non-trivial case, all MRD codes are
Gabidulin.

Question: How many (linear) MRD codes are there and
how many of those are Gabidulin codes?
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@ Non-Gabidulin Codes are Generic Sets

@ Rough Probability Estimation
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MRD and Gabidulin Codes

Rank metric:
dr(A,B) :=rank(A - B), A,BecF"™"

dr(a,b) := rank(p(a) — ¢(b)), a,b€ Fym

with ¢ : Fiim — F7**" isomorphism.

Definition

A linear code C C Ff}m of dimension k is called an MRD
(mazimum rank distance) code, if the minimum rank distance of

Cis equal ton —k + 1.
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Lemma

Any MRD code C C Fym of dimension k has a generator matriz
Ge FI(%" in systematic form, i.e.

G=[IL|X]

Moreover, all entries in X are from Fyn\F,.
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Lemma

Any MRD code C C Fym of dimension k has a generator matriz
Ge F%" in systematic form, i.e.

G=[IL|X]

Moreover, all entries in X are from Fyn\F,.

Question: Which X € IF];,S? k) generate what type of code?
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MRD Criteria

Theorem (Gabidulin)

Let G € IE‘](%” be a generator matrixz of a rank-metric code
C C Fym. Then C is an MRD code if and only if for any

Ae F;’;Xk of rank k, det(GA) # 0.
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MRD and Gabidulin Codes

MRD Criteria

Let UT}(q) be the subgroup of GL,(q) of upper triangular
matrices with all 1 on the diagonal, i.e

1 a2 - ain
0 1 aon

UT;(q) = . . aij € Fy
0 0 1

Theorem (HT-Marshall)

Let G € F I;é” be a generator matrixz of a rank-metric code
C CFym. Then C is an MRD code if and only if for any
A e UT;}(q) every maximal minor of GA is non-zero.
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Definition

Let g1,...,9n € Fgm be linearly independent over F, and
ged(s,m) = 1. A code C C Fyn with generator matrix

g1 g2 e 9n
q° q° q°
G 91 99 S gn
qs(k—l) qs(k—l) qs(k—l)
'h 95 ... On

is called a generalized Gabidulin code. For s = 1 it is a classical
Gabidulin code.

V.

For s = 1 it was shown by Delsarte (1978) and Gabidulin (1985)
that these codes are MRD. For s > 1 this fact was shown by
Kshevetskiy and Gabidulin (2005).
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Theorem (HT-Marshall)

An MRD code C C Fym of dimension k is a generalized
Gabidulin code if and only if

dim(CNnc))y =k —1.

N
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MRD and Gabidulin Codes

Theorem (HT-Marshall)

An MRD code C C Fym of dimension k is a generalized
Gabidulin code if and only if

dim(CNnc))y =k —1.

If G = [I}, | X] is generator matrix, then dim(CNCY)) =k —1
is equivalent to

r X _
rank [Ik (@) ] =k+1
I X
<:>rank[0 X(qs)—X :|:k+1
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Generic Sets and the Zariski Topology

© Generic Sets and the Zariski Topology



A generic property is one that holds almost everywhere.

Definition

A property of an irreducible algebraic variety is said to be true
generically, if it holds on a non-empty Zariski-open subset.
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Generic Sets and the Zariski Topology

A generic property is one that holds almost everywhere.

Definition

A property of an irreducible algebraic variety is said to be true
generically, if it holds on a non-empty Zariski-open subset.

Denote by ]Fq the algebraic closure of F,.

Definition (Zariski topology)

The Zariski topology on F; can be defined by specifying its
closed sets, namely as the algebraic sets:

V(S)={x eF,| f(x) =0,Vf € S},

where S is any set of polynomials in Fg[z1,. .., z,].




mum R

Generic Set

The open sets in the Zariski topology on IF‘Z are the
complements of a closed set. All sets of the form

O={zeclF,| f(x)#0,VfeS}

are open since their complement is given by

0¢ = {z e ®y | [] f(@) = 0},

fes

which is a Zariski-closed set.
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MRD Codes are Generic Sets

Recall that C = rowspan[/}, | X] C Fm is an MRD code if and

only if for any A € FI*¥ of rank k, det([I), | X]A) # 0.

The entries of X € IF];T(nn_k) are the variables @1, ..., Ty _p)-

Since det([Iy | X]A) € Fym |1, ..., T(n—k)] we get in the
algebraic closure:

The set of non-MRD codes C C ]Fgm s a Zariski-closed set. \

The set of MRD codes C C Fgm is a Zariski-open set and
therefore a generic set.

10 /23
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= For very large field size a random linear code is most
likely an MRD code!
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= For very large field size a random linear code is most
likely an MRD code!

MRD is generic!
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@ Non-Gabidulin Codes are Generic Sets
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Non-Gabidulin Codes are Generic Sets

Recall that an MRD code C = rowspan[l | X] C Fym is a

generalized Gabidulin code if and only if rank(X — X (")) = 1.
This condition is equivalent to (if all z; ¢ F)

V2 x 2 — submatrices M of (X — X (@) : det(M) = 0.

Since det(M) € Fym|[x1, ..., Typn_k)] We get in the algebraic
closure:
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Non-Gabidulin Codes are Generic Sets

Recall that an MRD code C = rowspan[l | X] C Fym is a
generalized Gabidulin code if and only if rank(X — X (")) = 1.
This condition is equivalent to (if all z; ¢ F)

V2 x 2 — submatrices M of (X — X (@) : det(M) = 0.

Since det(M) € Fym|[x1, ..., Tyn—r)] We get in the algebraic
closure:

The set of Gabidulin codes C C ]Fgm is a Zariski-closed subset of
the set of MRD codes.
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— For very large field size a random linear MRD code is
most likely not a generalized Gabidulin code!



idulin Codes are Not

— For very large field size a random linear MRD code is
most likely not a generalized Gabidulin code!

Non-Gabidulin is generic for linear MRD codes!
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Rough Probability Estimation

@ Rough Probability Estimation
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Rough Probability Estimation

Gabidulin Codes are Not

Lemma (Schwartz-Zippel)

Let f € Flxy,x2,...,x,] be a non-zero polynomial of total degree
d>0. Let S CF and let vi,vs,...,v,. be selected at random
independently and uniformly from S. Then

Prf(vi,ve,...,v,) =0] < ﬁ
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Rough Probability Estimation

MRD Codes (with Gabidulin criterion)

Consider G = [I}, | X] and A € F*¥ of rank k. There are

Hfz_ol (¢" — ¢*) < ¢*™ many different A’s. Moreover, det(GA) has
degree at most k. Hence the product of all these determinants
has degree at most kg*".

Theorem

The probability that a randomly chosen X € F];gl_k)

non-MRD code in ]Fgm 18

generates a

k qkn
qm

Pr[Pyet (71, 22, . . . 7$k(n—k)) =0] < = qun_m.

For m — oo the probability goes to zero!
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Rough Probability Estimation

MRD Codes (with HT-Marshall criterion)
Consider G = [Ij, | X]. The product of all maximal minors of G

has degree
> () ()=o)

n(n—1)

On the other hand we have |UT;(q)|=q 2= .

Theorem

The probability that a randomly chosen X € Fsr(nn_k)

non-MRD code in F;Lm 18

generates a

T ] )
q" '

Pr[Pminor(l'l’ L2, .- 7xk(n—k)) = 0] <

For m — oo the probability goes to zero!

16 /23
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Rough Probability Estimation

Gabidulin Codes (s =1)

Recall that rank(X — X?) = 0 cannot generate an MRD code.
We have
{X | X gen. Gabidulin} =

{X | X gen. MRD} N {X | rank(X — X9) = 1}].



Maximum Rank Distance Codes are Generic Gabidulin Cod

Rough Probability Estimation

Gabidulin Codes (s =1)

Recall that rank(X — X?) = 0 cannot generate an MRD code.
We have
{X | X gen. Gabidulin} =

{X | X gen. MRD} N {X | rank(X — X9) = 1}|.
Hence
{X | X generates Gabidulin code}| < |[{X | rank(X—-X1?) <1},
ie.,

Pr[X generates Gabidulin code| < Pr[ rank(X — X?) <1].

~
if all 2x2 minors are zero
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Gabidulin Codes (s =1)

We will check all non-intersecting 2 x 2-minors M;; of
(X — X)), of which we have |4]|25*| many. Each
determinant has degree 2¢, hence

PI“(Mij = 0) < 2q1—m‘

Since these determinants are independent we get:

Theorem

The probability that a randomly chosen X & F’;Sf_k) generates a

Gabidulin code is

[ Prirsi; = 0] < (242115500,
ij

For m — oo the probability goes to zero!
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Rough Probability Estimation

For all other s # 1 we get the same number, hence for the
probability of getting any generalized Gabidulin code we need
to multiply with Euler-¢(m) (since s, m are coprime).

The probability that a randomly chosen X € Fym
generalized Gabidulin code is upper bounded by

generates a

o(m)(2¢™) T < (m — 1)(2¢1~™) 51550,

19 /23
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Rough Probability Estimation

Upper bound on probabilities of non-MRD n = 4,5,
k=2,q=2:
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Rough Probability Estimation

Upper bound on probabilities of generalized Gabidulin n = 4,5,
k=2,qg=2:

Pr Pr
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Upper bound on probabilities that MRD is generalized
Gabidulin n =4,5, k =2,q = 2:

Pr Pr

1.5¢3]

Pr[MRD | Gab] Pr[Gab]  Pr[Gab]
Pr[MRD] ~ Pi[MRD)]

Pr[Gab | MRD] =

N
N
V)



Conclusions

o A random linear code is very likely MRD for large field size.

o A random linear code is very likely non-Gabidulin for large
field size.

o Even a random linear MRD code is very likely
non-Gabidulin for large field size.
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Rough Probability Estimation

Conclusions

o A random linear code is very likely MRD for large field size.

o A random linear code is very likely non-Gabidulin for large
field size.

o Even a random linear MRD code is very likely
non-Gabidulin for large field size.

Open question: What are all the other MRD codes out there?

Thanks for your attention!
Questions? — Comments?




	MRD and Gabidulin Codes
	Generic Sets and the Zariski Topology
	MRD Codes are Generic Sets
	Non-Gabidulin Codes are Generic Sets
	Rough Probability Estimation

