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A t-(v,k, \) design is a set V = {1,...,v} of points together with a
family B = { By, ..., By} of k-element subsets of V' called blocks such
that any t-subset of points is contained in exactly A blocks.
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The total number of blocks b and the number of blocks 7 through any
given point can be computed from ¢, v, k and A.
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that any t-subset of points is contained in exactly A blocks.

The total number of blocks b and the number of blocks 7 through any
given point can be computed from ¢, v, k and A.
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An automorphism of the design is a permutation oo : V' — V taking
blocks to blocks, i.e. such that a(B) € B for any B € B.
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Let G be a group of permutations of V and let 7y,...,7,, be the s
orbits of -element subsets of V and KCy, ..., K, the orbits of k-element ~ EEEEE
subsets of V. =] S
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Let G be a group of permutations of V and let 7y,...,7,, be the s
orbits of t-element subsets of V' and Iy, . . ., IC,, the orbits of k-element Pria
subsets of V. el 4

Let a;; = # of elements of /C; containing a given T' € 7;
(does not depend on the choice of T).
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Let G be a group of permutations of V and let 7y,...,7,, be the
orbits of t-element subsets of V' and ICy, ..., IC, the orbits of k-element
subsets of V.

Let a;; = # of elements of /C; containing a given T' € 7;
(does not depend on the choice of T).

The matrix A = [a;;] is the Kramer-Mesner matrix. Designs with G as
an automorphism group correspond to 0-1 solutions of the system of
linear equations A - x = A J, where J = (1,...,1)".
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Let G be a group of permutations of V and let 7y,...,7,, be the
orbits of t-element subsets of V' and ICy, ..., IC, the orbits of k-element
subsets of V.

Let a;; = # of elements of /C; containing a given T' € 7;
(does not depend on the choice of T).

The matrix A = [a;;] is the Kramer-Mesner matrix. Designs with G as
an automorphism group correspond to 0-1 solutions of the system of
linear equations A - x = A J, where J = (1,...,1)".

Solving systems of linear equations over the integers is a NP complete
problem. The Kramer-Mesner system is computationally feasible only if
the number of variables n is sufficiently small.
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A t-(v, k, \) design is quasi-symmetric if any two blocks intersect either
in x or in y points, for non-negative integers = < y. Quasi-symmetric
designs have important connections with strongly regular graphs and PubrevEs
self-orthogonal codes. BEE

_ <
>




A t-(v, k, \) design is quasi-symmetric if any two blocks intersect either
in x or in y points, for non-negative integers = < y. Quasi-symmetric
designs have important connections with strongly regular graphs and PubrevEs
self-orthogonal codes. B

It is known that quasi-symmetric designs:

e do not exist for ¢t > 5;
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in x or in y points, for non-negative integers = < y. Quasi-symmetric
designs have important connections with strongly regular graphs and
self-orthogonal codes.

It is known that quasi-symmetric designs:
e do not exist for ¢t > 5;

e for t = 4 the only example is the 4-(23,7,1) design (z =1, y = 3)
and its complement;
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A t-(v, k, \) design is quasi-symmetric if any two blocks intersect either
in x or in y points, for non-negative integers = < y. Quasi-symmetric
designs have important connections with strongly regular graphs and
self-orthogonal codes.

It is known that quasi-symmetric designs:
e do not exist for ¢t > 5;

e for t = 4 the only example is the 4-(23,7,1) design (z =1, y = 3)
and its complement;

e for £ = 3 it is conjectured that the only examples are
— the quasi-symmetric 4-design and its residual 3-(22,7,4) design,
— Hadamard 3-designs,

—3-(A+ DN +5X+5), A+ 1)(A+2),\) designs
(known to exist only for A\ = 1),

— a hypothetical 3-(496, 40, 3) design,

— complements of these designs.
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For t = 2 the classification of feasible parameters of quasi-symmetric
designs is widely open. There are many parameter sets for which exis-
tence is unknown. DRSO
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For t = 2 the classification of feasible parameters of quasi-symmetric
designs is widely open. There are many parameter sets for which exis-
tence is unknown. DRSO
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M. S. Shrikhande, Quasi-symmetric designs, in: The Handbook of Com-
binatorial Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz),
CRC Press, 2007, pp. 578-582.

No. v kK X r b x y Existence No. v kK X r b x y Existence
119 7 7 21 57 1 3 No 25 41 9 9 45 206 1 3 ?
219 9 16 3 76 3 5 No 26 41 20 57 120 246 8 11 ?
3 20 10 18 38 76 4 6 No 27 41 17 34 85 205 5 8 No
4 20 8 14 38 9 2 4 No 28 42 21 60 123 246 9 12 ?
521 9 12 30 70 3 5 No 29 42 18 51 123 287 6 9 ?
6 21 8 14 40 105 2 4 No 30 43 18 51 126 301 6 9 No
7 21 6 4 16 56 0 2 Yes(1) 31 43 16 40 112 301 4 7 ?
8 21 7 12 40 120 1 3 Yes(1) 32 45 21 70 154 330 9 13 ?
9 22 8 12 36 99 2 4 No 33 45 9 8 44 220 1 3 Yes(1)
102 6 5 21 77 0 2 Yes(l) 34 45 18 34 88 220 6 9 ?
11 22 7 16 56 176 1 3 Yes(1) 35 45 15 42 132 396 3 6 ?
12 23 7 21 77 253 1 3 Yes(1) 36 46 16 72 216 621 4 7 ?
13 24 8 7T 23 69 2 4 No 37 46 16 8 24 69 4 6 ?
14 28 7 16 72 288 1 3 No 38 49 9 6 36 196 1 3 Yes(>44)
15 28 12 11 27 63 4 6 Yes(>8784) 39 49 16 45 144 441 4 7 ?
16 29 7 12 56 232 1 3 No 40 49 13 13 52 196 1 4 ?
17 31 7 7 35 155 1 3 Yes(5) 41 51 21 14 35 8 6 9 No
18 33 15 35 80 176 6 9 ? 42 51 15 7T 25 8 3 5 No
19 33 9 6 24 88 1 3 No 43 52 16 20 68 221 4 7 ?
20 35 7 3 17 8 1 3 No 44 55 16 40 144 495 4 8 ?
21 35 14 13 34 8 5 8 ? 45 55 15 63 243 891 3 6 ? -
22 36 16 12 28 63 6 8 Yes(>8784) 46 55 15 T2 99 3 5 ? “
23 37 9 8 36 148 1 3 ? 47 56 16 18 66 231 4 8 ?
24 39 12 22 76 247 3 6 ? 48 56 15 42 165 616 3 6 ?




For t = 2 the classification of feasible parameters of quasi-symmetric
designs is widely open. There are many parameter sets for which exis-
tence is unknown. DRSO

M. S. Shrikhande, Quasi-symmetric designs, in: The Handbook of Com-
binatorial Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz),
CRC Press, 2007, pp. 578-582.

No. v kK X r b x y Existence No. v kK X r b x y Existence
119 7 7 21 57 1 3 No 25 41 9 9 45 206 1 3 ?
219 9 16 3 76 3 5 No 26 41 20 57 120 246 8 11 ?
3 20 10 18 38 76 4 6 No 27 41 17 34 85 205 5 8 No
4 20 8 14 38 9 2 4 No 28 42 21 60 123 246 9 12 ?
521 9 12 30 70 3 5 No 29 42 18 51 123 287 6 9 ?
6 21 8 14 40 105 2 4 No 30 43 18 51 126 301 6 9 No
7 21 6 4 16 56 0 2 Yes(1) 31 43 16 40 112 301 4 7 ?
8 21 7 12 40 120 1 3 Yes(1) 32 45 21 70 154 330 9 13 ?
9 22 8 12 36 99 2 4 No 33 45 9 8 44 220 1 3 Yes(1)
102 6 5 21 77 0 2 Yes(l) 34 45 18 34 88 220 6 9 ?
11 22 7 16 56 176 1 3 Yes(1) 35 45 15 42 132 396 3 6 ?
12 23 7 21 77 253 1 3 Yes(1) 36 46 16 72 216 621 4 7 ?
13 24 8 7T 23 69 2 4 No 37 46 16 8 24 69 4 6 ?
14 28 7 16 72 288 1 3 No 38 49 9 6 36 196 1 3 Yes(>44)
15 28 12 11 27 63 4 6 Yes(>8784) 39 49 16 45 144 441 4 7 ?
16 29 7 12 56 232 1 3 No 40 49 13 13 52 196 1 4 ?
17 31 7 7 35 155 1 3 Yes(5) 41 51 21 14 35 8 6 9 No
18 33 15 35 80 176 6 9 ? 42 51 15 7T 25 8 3 5 No
19 33 9 6 24 88 1 3 No 43 52 16 20 68 221 4 7 ?
20 35 7 3 17 8 1 3 No 44 55 16 40 144 495 4 8 ?
21 35 14 13 34 8 5 8 ? 45 55 15 63 243 891 3 6 ? -
22 36 16 12 28 63 6 8 Yes(>8784) 46 55 15 T27T 99 3 5 ? “
23 37 9 8 36 148 1 3 ? 47 56 16 18 66 231 4 8 ?
24 39 12 22 76 247 3 6 ? 48 56 15 42 165 616 3 6 ?




Adaptations of Kramer-Mesner method to quasi-symmetric designs: ErsE
1. An orbit of k-subsets IC; is good if |K; N K| is either x or y, for
any two elements K, K, € ;. We can limit the search to good orbits
and thereby reduce the number of variables n.
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Adaptations of Kramer-Mesner method to quasi-symmetric designs:

1. An orbit of k-subsets IC; is good if |K; N K| is either x or y, for
any two elements K, K, € ;. We can limit the search to good orbits
and thereby reduce the number of variables n.

2. Two orbits /C;, IC; are compatible if |K; N K| is either x or y, for
any K; € K;, Ky € K;. The n x n matrix C' = [¢;;] with ¢;; = 1 if
IC; and IC; are compatible, and ¢;; = 0 otherwise, is the compatibility
matrix. This information can be used to make the backtracking search
for solutions of the Kramer-Mesner system more efficient.
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2016
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Example: 2-(28,12,11), z =4, y = 6. Group G = {«, 3) isomorphic
to the dihedral group of order 12 generated by the permutations

a=(1,2,3,4,5,6)(7,8,9,10, 11, 12)(13, 14, 15,16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),
B =(1,6)(2,5)(3,4)(7,11)(8,10)(13,17)(14, 16)(19, 23)(20, 22)(25, 27).
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Example: 2-(28,12,11), z =4, y = 6. Group G = {«, 3) isomorphic
to the dihedral group of order 12 generated by the permutations

a=(1,2,3,4,5,6)(7,8,9,10,11,12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24) (25, 26, 27),
B =(1,6)(2,5)(3,4)(7,11)(8,10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).
V={1,...,28}
Number of orbits 73, ..., 7,, of 2-element subsets: m = 47.
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Example: 2-(28,12,11), z =4, y = 6. Group G = {«, 3) isomorphic
to the dihedral group of order 12 generated by the permutations

a=(1,2,3,4,5,6)(7,8,9,10,11,12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24) (25, 26, 27),
B =(1,6)(2,5)(3,4)(7,11)(8,10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).

vV =A{1,...,28}

Number of orbits 73, ..., 7,, of 2-element subsets: m = 47.

Total number of orbits of 12-element subsets: n = 2 543 568.
Number of good orbits Ky, ..., K,: n = 1097.

Number of solutions of the 47 x 1097 Kramer-Mesner system respecting
the compatibility matrix: 654 336.

Number of non-isomorphic designs: 13 656.
We use GAP to compute the orbits and set up the Kramer-Mesner

system, our own backtracking solver written in C, and nauty2 by
B. D. McKay and A. Piperno for isomorphism checking.
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Proposition. Up to isomorphism there are 13656 quasi-symmetric
(28,12,11) designs with z = 4, y = 6 and G = («, ) as an auto-
morphism group.
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Proposition. Up to isomorphism there are 13656 quasi-symmetric
(28,12,11) designs with z = 4, y = 6 and G = («, ) as an auto-
morphism group.

Example: 2-(36,16,12), x =6, y = 8. Group G = {(«, 3) isomorphic
to the symmetric group S, generated by the permutations

a = (1,2,3)(4,5,6)(7,8,9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)(25, 26, 27)
(28,29,30)(31, 32, 33),

B = (1,4)(2,7)(5,9)(6,11)(8, 10)(13, 16)(14, 19)(15, 21)(17, 22)(18, 24)(20, 23)(26, 27)(29, 30)
(32, 34).
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Proposition. Up to isomorphism there are 13656 quasi-symmetric
(28,12,11) designs with z = 4, y = 6 and G = («, ) as an auto-
morphism group.

Example: 2-(36,16,12), x =6, y = 8. Group G = {(«, 3) isomorphic
to the symmetric group S, generated by the permutations

a = (1,2,3)(4,5,6)(7,8,9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)(25, 26, 27)
(28,29,30)(31, 32, 33),

B = (1,4)(2,7)(5,9)(6,11)(8, 10)(13, 16)(14, 19)(15, 21)(17, 22)(18, 24)(20, 23)(26, 27)(29, 30)
(32, 34).

Proposition. Up to isomorphism there are 35572 quasi-symmetric
(36,16, 12) designs with z = 6, y = 8 and G = («, 3) as an auto-
morphism group.
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Proposition. Up to isomorphism there are 13656 quasi-symmetric
(28,12,11) designs with z = 4, y = 6 and G = («, ) as an auto-
morphism group.

Example: 2-(36,16,12), x =6, y = 8. Group G = {(«, 3) isomorphic
to the symmetric group S, generated by the permutations

2.3)(4,5,6)(7,8,9)(10,11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)(25, 26, 27)
8,29,30)(31, 32, 33),

4)(2,7)(5,9)(6,11)(8,10)(13, 16)(14, 19)(15, 21)(17, 22)(18, 24)(20, 23)(26, 27)(29, 30)
2, 34).

g

= (1,
(2
(1,
(32,

Proposition. Up to isomorphism there are 35572 quasi-symmetric
(36,16, 12) designs with x = 6, y = 8 and G = (a, 3) as an auto-
morphism group.

Theorem. There are more than 50000 quasi-symmetric (28,12, 11)
designs and more than 500 000 quasi-symmetric (36, 16, 12) designs up
to isomorphism.
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Example: 2-(56, 16, 18), x = 4, y = 8 (unknown).
How to choose the group G?
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Example: 2-(56, 16, 18), x = 4, y = 8 (unknown).
How to choose the group G?
The associated strongly regular graph has parameters S RG(231, 30,9, 3).

Such a graph exists (the Cameron graph) and has a group of automor-
phisms isomorphic to the Mathieu group M, of order 20160.
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Example: 2-(56, 16, 18), x = 4, y = 8 (unknown).
How to choose the group G?

The associated strongly regular graph has parameters S RG(231, 30,9, 3).

Such a graph exists (the Cameron graph) and has a group of automor-
phisms isomorphic to the Mathieu group M, of order 20160.

The group My, also acts on the quasi-symmetric 2-(21,6,4), © = 0,
y = 2 design with b = 56 blocks. It has a subgroup G of order 960
isomorphic to (Zy X Zoy X Zy X Z3).As. We take the permutation
representation of degree 56 determined by the action on the blocks of
the (21,6,4) design: G = («, (),

(1 7,8,9,10)(11,12, 13,14, 15)(16, 17, 18,19, 20)(21, 22, 23, 24, 25) (26, 27, 28, 29, 30)

(31,32, 33, 34, 35)(36, 37, 38, 39, 40) (41, 42, 43, 44, 45) (46, 47, 48, 49, 50) (51, 52, 53, 54, 55),

3= (1,6,8)(2,21,26)(3,32,34)(4, 11,5)(7, 15,22)(9, 16, 13)(10, 29, 17)(12, 33, 30)(14, 19, 31)
(18,23, 35) (24, 28, 36) (25, 37, 30) (27, 38, 40) (42, 51, 49)(43, 52, 45) (44, 46, 47) (48, 54, 53)
(50, 56, 55).

a=(1,2,3,4,5)(6,

Dubrovnik
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Theorem. There are three quasi-symmetric (56, 16, 18) designs with
r =4,y =238and G = («,3) as an automorphism group. The first
one has G as its full automorphism group, the second one has a split
extension (G.Z, of order 1920, and the third one has a split extension
Mo, .7, of order 40320 as its full automorphism group.
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r =4,y =238and G = («,3) as an automorphism group. The first
one has G as its full automorphism group, the second one has a split
extension (G.Z, of order 1920, and the third one has a split extension
Mo, .7, of order 40320 as its full automorphism group.

Computational details:

e total number of orbits of 16-element subsets is > % ~ 4.34 - 1019

e most orbits are of size 960 > 231 = b (# of blocks of the design)

e there are 1242 “short orbits”, of size < b; we can generate them
directly by an algorithm written in GAP
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Theorem. There are three quasi-symmetric (56, 16, 18) designs with
r =4,y =238and G = («,3) as an automorphism group. The first
one has G as its full automorphism group, the second one has a split
extension (G.Z, of order 1920, and the third one has a split extension
Mo, .7, of order 40320 as its full automorphism group.

Computational details:

16

e total number of orbits of 16-element subsets is > % ~ 4.34 - 1019

e most orbits are of size 960 > 231 = b (# of blocks of the design)

e there are 1242 “short orbits”, of size < b; we can generate them
directly by an algorithm written in GAP

e only 40 of the short orbits are good, with intersection numbers
x=4,y=28
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Theorem. There are three quasi-symmetric (56, 16, 18) designs with
r =4,y =238and G = («,3) as an automorphism group. The first
one has G as its full automorphism group, the second one has a split
extension (G.Z, of order 1920, and the third one has a split extension
Mo, .7, of order 40320 as its full automorphism group.

Computational details:

16

e total number of orbits of 16-element subsets is > % ~ 4.34 - 1019

e most orbits are of size 960 > 231 = b (# of blocks of the design)

e there are 1242 “short orbits”, of size < b; we can generate them
directly by an algorithm written in GAP

e only 40 of the short orbits are good, with intersection numbers
r=4,y=238

e the 7 x 40 Kramer-Mesner system has 5 solutions respecting the
compatibility matrix, giving rise to the 3 quasi-symmetric designs
described in the theorem
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The binary linear codes generated by the block incidence vectors of the
new designs are self-orthogonal (C+ < ().
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The binary linear codes generated by the block incidence vectors of the
new designs are self-orthogonal (C+ < ().

The first and the second design span codes of length 56, dimension 23
and minimum distance 8. Best known [56, 23, d ], code: d = 14.
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The binary linear codes generated by the block incidence vectors of the
new designs are self-orthogonal (C+ < ().

The first and the second design span codes of length 56, dimension 23
and minimum distance 8. Best known [56, 23, d ], code: d = 14.

The third design (with automorphism group Ms;.Z,) spans a code of
length 56, dimension 19 and minimum distance 16. Same parameters
as the best known [56, 19, d ], code!
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The binary linear codes generated by the block incidence vectors of the
new designs are self-orthogonal (C+ < ().

The first and the second design span codes of length 56, dimension 23
and minimum distance 8. Best known [56, 23, d ], code: d = 14.

The third design (with automorphism group Ms;.Z,) spans a code of
length 56, dimension 19 and minimum distance 16. Same parameters
as the best known [56, 19, d ], code!

Description from M. Grassl's page www.codetables.de based on
A. E. Brouwer's tables:
Construction of a linear code [56, 19, 16] over GF'(2):

1: [55,21, 15] Cyclic Linear Code over GF'(2). CyclicCode of length 55
with generating polynomial 23 + 23! + 2% + 2% + 220 + 2% + 219 +
Bk A b A A - L

2: [56, 21, 16] Linear Code over GF'(2). ExtendCode [1] by 1.
3: [56, 19, 16] Linear Code over GF'(2). Subcode of [2].
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Is the code generated by the third (56, 16, 18) design equivalent to a
known [56, 19, 16, code?
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Is the code generated by the third (56, 16, 18) design equivalent to a
known [56, 19, 16, code?

21
Problem: number of subcodes in step 3 is [19] = 733006 703 275.

2

_ <
>




Is the code generated by the third (56, 16, 18) design equivalent to a
known [56, 19, 16, code?

21
Problem: number of subcodes in step 3 is [19] = 733006 703 275.

2

|dea: look at minimum weight words in the [56, 21, 16], code from step 2.
There are 5170 words of weigt 16; quasi-symmetric designs are equiva-
lent to b = 231 words pairwise intersecting in © = 4 or y = 8 coordi-
nates.

Computational tools: GAP package GUAVA
cliquer by P. Ostergard and S. Niskanen
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Is the code generated by the third (56, 16, 18) design equivalent to a
known [56, 19, 16, code?

21
Problem: number of subcodes in step 3 is [19] = 733006 703 275.

2

|dea: look at minimum weight words in the [56, 21, 16], code from step 2.
There are 5170 words of weigt 16; quasi-symmetric designs are equiva-
lent to b = 231 words pairwise intersecting in © = 4 or y = 8 coordi-
nates.

Computational tools: GAP package GUAVA
cliquer by P. Ostergard and S. Niskanen

Thanks for your attention!
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