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A t-(v, k, λ) design is a set V = {1, . . . , v} of points together with a
family B = {B1, . . . , Bb} of k-element subsets of V called blocks such
that any t-subset of points is contained in exactly λ blocks.



2/12

J
I

Back

FullScr

A t-(v, k, λ) design is a set V = {1, . . . , v} of points together with a
family B = {B1, . . . , Bb} of k-element subsets of V called blocks such
that any t-subset of points is contained in exactly λ blocks.

The total number of blocks b and the number of blocks r through any
given point can be computed from t, v, k and λ.

b = λ ·
(
v
t

)(
k
t

), r = λ ·
(
v−1
t−1

)(
k−1
t−1

)



2/12

J
I

Back

FullScr

A t-(v, k, λ) design is a set V = {1, . . . , v} of points together with a
family B = {B1, . . . , Bb} of k-element subsets of V called blocks such
that any t-subset of points is contained in exactly λ blocks.

The total number of blocks b and the number of blocks r through any
given point can be computed from t, v, k and λ.

b = λ ·
(
v
t

)(
k
t

), r = λ ·
(
v−1
t−1

)(
k−1
t−1

)
An automorphism of the design is a permutation α : V → V taking
blocks to blocks, i.e. such that α(B) ∈ B for any B ∈ B.
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Let G be a group of permutations of V and let T1, . . . , Tm be the
orbits of t-element subsets of V and K1, . . . ,Kn the orbits of k-element
subsets of V .



3/12

J
I

Back

FullScr

Let G be a group of permutations of V and let T1, . . . , Tm be the
orbits of t-element subsets of V and K1, . . . ,Kn the orbits of k-element
subsets of V .

Let aij = # of elements of Kj containing a given T ∈ Ti
(does not depend on the choice of T ).
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Let G be a group of permutations of V and let T1, . . . , Tm be the
orbits of t-element subsets of V and K1, . . . ,Kn the orbits of k-element
subsets of V .

Let aij = # of elements of Kj containing a given T ∈ Ti
(does not depend on the choice of T ).

The matrix A = [aij] is the Kramer-Mesner matrix. Designs with G as
an automorphism group correspond to 0–1 solutions of the system of
linear equations A · x = λ J , where J = (1, . . . , 1)τ .
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Let G be a group of permutations of V and let T1, . . . , Tm be the
orbits of t-element subsets of V and K1, . . . ,Kn the orbits of k-element
subsets of V .

Let aij = # of elements of Kj containing a given T ∈ Ti
(does not depend on the choice of T ).

The matrix A = [aij] is the Kramer-Mesner matrix. Designs with G as
an automorphism group correspond to 0–1 solutions of the system of
linear equations A · x = λ J , where J = (1, . . . , 1)τ .

Solving systems of linear equations over the integers is a NP complete
problem. The Kramer-Mesner system is computationally feasible only if
the number of variables n is sufficiently small.
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A t-(v, k, λ) design is quasi-symmetric if any two blocks intersect either
in x or in y points, for non-negative integers x < y. Quasi-symmetric
designs have important connections with strongly regular graphs and
self-orthogonal codes.
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in x or in y points, for non-negative integers x < y. Quasi-symmetric
designs have important connections with strongly regular graphs and
self-orthogonal codes.

It is known that quasi-symmetric designs:

• do not exist for t ≥ 5;
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It is known that quasi-symmetric designs:

• do not exist for t ≥ 5;

• for t = 4 the only example is the 4-(23, 7, 1) design (x = 1, y = 3)
and its complement;
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A t-(v, k, λ) design is quasi-symmetric if any two blocks intersect either
in x or in y points, for non-negative integers x < y. Quasi-symmetric
designs have important connections with strongly regular graphs and
self-orthogonal codes.

It is known that quasi-symmetric designs:

• do not exist for t ≥ 5;

• for t = 4 the only example is the 4-(23, 7, 1) design (x = 1, y = 3)
and its complement;

• for t = 3 it is conjectured that the only examples are

– the quasi-symmetric 4-design and its residual 3-(22, 7, 4) design,

– Hadamard 3-designs,

– 3-((λ + 1)(λ2 + 5λ + 5), (λ + 1)(λ + 2), λ) designs
(known to exist only for λ = 1),

– a hypothetical 3-(496, 40, 3) design,

– complements of these designs.
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For t = 2 the classification of feasible parameters of quasi-symmetric
designs is widely open. There are many parameter sets for which exis-
tence is unknown.
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For t = 2 the classification of feasible parameters of quasi-symmetric
designs is widely open. There are many parameter sets for which exis-
tence is unknown.

M. S. Shrikhande, Quasi-symmetric designs, in: The Handbook of Com-
binatorial Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz),
CRC Press, 2007, pp. 578–582.
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For t = 2 the classification of feasible parameters of quasi-symmetric
designs is widely open. There are many parameter sets for which exis-
tence is unknown.

M. S. Shrikhande, Quasi-symmetric designs, in: The Handbook of Com-
binatorial Designs, Second Edition (eds. C. J. Colbourn and J. H. Dinitz),
CRC Press, 2007, pp. 578–582.
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Adaptations of Kramer-Mesner method to quasi-symmetric designs:

1. An orbit of k-subsets Ki is good if |K1 ∩ K2| is either x or y, for
any two elements K1, K2 ∈ Ki. We can limit the search to good orbits
and thereby reduce the number of variables n.
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Adaptations of Kramer-Mesner method to quasi-symmetric designs:

1. An orbit of k-subsets Ki is good if |K1 ∩ K2| is either x or y, for
any two elements K1, K2 ∈ Ki. We can limit the search to good orbits
and thereby reduce the number of variables n.

2. Two orbits Ki, Kj are compatible if |K1 ∩K2| is either x or y, for
any K1 ∈ Ki, K2 ∈ Kj. The n × n matrix C = [cij] with cij = 1 if
Ki and Kj are compatible, and cij = 0 otherwise, is the compatibility
matrix. This information can be used to make the backtracking search
for solutions of the Kramer-Mesner system more efficient.
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Example: 2-(28, 12, 11), x = 4, y = 6. Group G = 〈α, β〉 isomorphic
to the dihedral group of order 12 generated by the permutations

α = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),

β = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).
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Example: 2-(28, 12, 11), x = 4, y = 6. Group G = 〈α, β〉 isomorphic
to the dihedral group of order 12 generated by the permutations

α = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),

β = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).

V = {1, . . . , 28}
Number of orbits T1, . . . , Tm of 2-element subsets: m = 47.
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Example: 2-(28, 12, 11), x = 4, y = 6. Group G = 〈α, β〉 isomorphic
to the dihedral group of order 12 generated by the permutations

α = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),

β = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).

V = {1, . . . , 28}
Number of orbits T1, . . . , Tm of 2-element subsets: m = 47.

Total number of orbits of 12-element subsets: n = 2 543 568.
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to the dihedral group of order 12 generated by the permutations

α = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),

β = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).

V = {1, . . . , 28}
Number of orbits T1, . . . , Tm of 2-element subsets: m = 47.

Total number of orbits of 12-element subsets: n = 2 543 568.

Number of good orbits K1, . . . ,Kn: n = 1097.
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Example: 2-(28, 12, 11), x = 4, y = 6. Group G = 〈α, β〉 isomorphic
to the dihedral group of order 12 generated by the permutations

α = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),

β = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).

V = {1, . . . , 28}
Number of orbits T1, . . . , Tm of 2-element subsets: m = 47.

Total number of orbits of 12-element subsets: n = 2 543 568.

Number of good orbits K1, . . . ,Kn: n = 1097.

Number of solutions of the 47×1097 Kramer-Mesner system respecting
the compatibility matrix: 654 336.
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Number of orbits T1, . . . , Tm of 2-element subsets: m = 47.

Total number of orbits of 12-element subsets: n = 2 543 568.

Number of good orbits K1, . . . ,Kn: n = 1097.

Number of solutions of the 47×1097 Kramer-Mesner system respecting
the compatibility matrix: 654 336.

Number of non-isomorphic designs: 13 656.
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Example: 2-(28, 12, 11), x = 4, y = 6. Group G = 〈α, β〉 isomorphic
to the dihedral group of order 12 generated by the permutations

α = (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12)(13, 14, 15, 16, 17, 18)(19, 20, 21, 22, 23, 24)(25, 26, 27),

β = (1, 6)(2, 5)(3, 4)(7, 11)(8, 10)(13, 17)(14, 16)(19, 23)(20, 22)(25, 27).

V = {1, . . . , 28}
Number of orbits T1, . . . , Tm of 2-element subsets: m = 47.

Total number of orbits of 12-element subsets: n = 2 543 568.

Number of good orbits K1, . . . ,Kn: n = 1097.

Number of solutions of the 47×1097 Kramer-Mesner system respecting
the compatibility matrix: 654 336.

Number of non-isomorphic designs: 13 656.

We use GAP to compute the orbits and set up the Kramer-Mesner
system, our own backtracking solver written in C, and nauty2 by
B. D. McKay and A. Piperno for isomorphism checking.
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Proposition. Up to isomorphism there are 13656 quasi-symmetric
(28, 12, 11) designs with x = 4, y = 6 and G = 〈α, β〉 as an auto-
morphism group.
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Proposition. Up to isomorphism there are 13656 quasi-symmetric
(28, 12, 11) designs with x = 4, y = 6 and G = 〈α, β〉 as an auto-
morphism group.

Example: 2-(36, 16, 12), x = 6, y = 8. Group G = 〈α, β〉 isomorphic
to the symmetric group S4 generated by the permutations

α = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)(25, 26, 27)
(28, 29, 30)(31, 32, 33),

β = (1, 4)(2, 7)(5, 9)(6, 11)(8, 10)(13, 16)(14, 19)(15, 21)(17, 22)(18, 24)(20, 23)(26, 27)(29, 30)
(32, 34).
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Proposition. Up to isomorphism there are 13656 quasi-symmetric
(28, 12, 11) designs with x = 4, y = 6 and G = 〈α, β〉 as an auto-
morphism group.

Example: 2-(36, 16, 12), x = 6, y = 8. Group G = 〈α, β〉 isomorphic
to the symmetric group S4 generated by the permutations

α = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)(25, 26, 27)
(28, 29, 30)(31, 32, 33),

β = (1, 4)(2, 7)(5, 9)(6, 11)(8, 10)(13, 16)(14, 19)(15, 21)(17, 22)(18, 24)(20, 23)(26, 27)(29, 30)
(32, 34).

Proposition. Up to isomorphism there are 35572 quasi-symmetric
(36, 16, 12) designs with x = 6, y = 8 and G = 〈α, β〉 as an auto-
morphism group.



8/12

J
I

Back

FullScr

Proposition. Up to isomorphism there are 13656 quasi-symmetric
(28, 12, 11) designs with x = 4, y = 6 and G = 〈α, β〉 as an auto-
morphism group.

Example: 2-(36, 16, 12), x = 6, y = 8. Group G = 〈α, β〉 isomorphic
to the symmetric group S4 generated by the permutations

α = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20, 21)(22, 23, 24)(25, 26, 27)
(28, 29, 30)(31, 32, 33),

β = (1, 4)(2, 7)(5, 9)(6, 11)(8, 10)(13, 16)(14, 19)(15, 21)(17, 22)(18, 24)(20, 23)(26, 27)(29, 30)
(32, 34).

Proposition. Up to isomorphism there are 35572 quasi-symmetric
(36, 16, 12) designs with x = 6, y = 8 and G = 〈α, β〉 as an auto-
morphism group.

Theorem. There are more than 50 000 quasi-symmetric (28, 12, 11)
designs and more than 500 000 quasi-symmetric (36, 16, 12) designs up
to isomorphism.
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Example: 2-(56, 16, 18), x = 4, y = 8 (unknown).

How to choose the group G?
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Example: 2-(56, 16, 18), x = 4, y = 8 (unknown).

How to choose the group G?

The associated strongly regular graph has parameters SRG(231, 30, 9, 3).
Such a graph exists (the Cameron graph) and has a group of automor-
phisms isomorphic to the Mathieu group M21 of order 20160.
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Example: 2-(56, 16, 18), x = 4, y = 8 (unknown).

How to choose the group G?

The associated strongly regular graph has parameters SRG(231, 30, 9, 3).
Such a graph exists (the Cameron graph) and has a group of automor-
phisms isomorphic to the Mathieu group M21 of order 20160.

The group M21 also acts on the quasi-symmetric 2-(21, 6, 4), x = 0,
y = 2 design with b = 56 blocks. It has a subgroup G of order 960
isomorphic to (Z2 × Z2 × Z2 × Z2).A5. We take the permutation
representation of degree 56 determined by the action on the blocks of
the (21, 6, 4) design: G = 〈α, β〉,

α = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15)(16, 17, 18, 19, 20)(21, 22, 23, 24, 25)(26, 27, 28, 29, 30)
(31, 32, 33, 34, 35)(36, 37, 38, 39, 40)(41, 42, 43, 44, 45)(46, 47, 48, 49, 50)(51, 52, 53, 54, 55),

β = (1, 6, 8)(2, 21, 26)(3, 32, 34)(4, 11, 5)(7, 15, 22)(9, 16, 13)(10, 29, 17)(12, 33, 30)(14, 19, 31)
(18, 23, 35)(24, 28, 36)(25, 37, 39)(27, 38, 40)(42, 51, 49)(43, 52, 45)(44, 46, 47)(48, 54, 53)
(50, 56, 55).
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Theorem. There are three quasi-symmetric (56, 16, 18) designs with
x = 4, y = 8 and G = 〈α, β〉 as an automorphism group. The first
one has G as its full automorphism group, the second one has a split
extension G.Z2 of order 1920, and the third one has a split extension
M21.Z2 of order 40320 as its full automorphism group.
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Theorem. There are three quasi-symmetric (56, 16, 18) designs with
x = 4, y = 8 and G = 〈α, β〉 as an automorphism group. The first
one has G as its full automorphism group, the second one has a split
extension G.Z2 of order 1920, and the third one has a split extension
M21.Z2 of order 40320 as its full automorphism group.

Computational details:

• total number of orbits of 16-element subsets is >
(56

16)
960 ≈ 4.34 · 1010
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960 ≈ 4.34 · 1010

• most orbits are of size 960 > 231 = b (# of blocks of the design)
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extension G.Z2 of order 1920, and the third one has a split extension
M21.Z2 of order 40320 as its full automorphism group.

Computational details:

• total number of orbits of 16-element subsets is >
(56

16)
960 ≈ 4.34 · 1010

• most orbits are of size 960 > 231 = b (# of blocks of the design)

• there are 1242 “short orbits”, of size ≤ b; we can generate them
directly by an algorithm written in GAP
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x = 4, y = 8 and G = 〈α, β〉 as an automorphism group. The first
one has G as its full automorphism group, the second one has a split
extension G.Z2 of order 1920, and the third one has a split extension
M21.Z2 of order 40320 as its full automorphism group.

Computational details:

• total number of orbits of 16-element subsets is >
(56

16)
960 ≈ 4.34 · 1010

• most orbits are of size 960 > 231 = b (# of blocks of the design)

• there are 1242 “short orbits”, of size ≤ b; we can generate them
directly by an algorithm written in GAP

• only 40 of the short orbits are good, with intersection numbers
x = 4, y = 8
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Theorem. There are three quasi-symmetric (56, 16, 18) designs with
x = 4, y = 8 and G = 〈α, β〉 as an automorphism group. The first
one has G as its full automorphism group, the second one has a split
extension G.Z2 of order 1920, and the third one has a split extension
M21.Z2 of order 40320 as its full automorphism group.

Computational details:

• total number of orbits of 16-element subsets is >
(56

16)
960 ≈ 4.34 · 1010

• most orbits are of size 960 > 231 = b (# of blocks of the design)

• there are 1242 “short orbits”, of size ≤ b; we can generate them
directly by an algorithm written in GAP

• only 40 of the short orbits are good, with intersection numbers
x = 4, y = 8

• the 7 × 40 Kramer-Mesner system has 5 solutions respecting the
compatibility matrix, giving rise to the 3 quasi-symmetric designs
described in the theorem
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The binary linear codes generated by the block incidence vectors of the
new designs are self-orthogonal (C⊥ ≤ C).
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new designs are self-orthogonal (C⊥ ≤ C).

The first and the second design span codes of length 56, dimension 23
and minimum distance 8. Best known [56, 23, d ]2 code: d = 14.
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The binary linear codes generated by the block incidence vectors of the
new designs are self-orthogonal (C⊥ ≤ C).

The first and the second design span codes of length 56, dimension 23
and minimum distance 8. Best known [56, 23, d ]2 code: d = 14.

The third design (with automorphism group M21.Z2) spans a code of
length 56, dimension 19 and minimum distance 16. Same parameters
as the best known [56, 19, d ]2 code!
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The binary linear codes generated by the block incidence vectors of the
new designs are self-orthogonal (C⊥ ≤ C).

The first and the second design span codes of length 56, dimension 23
and minimum distance 8. Best known [56, 23, d ]2 code: d = 14.

The third design (with automorphism group M21.Z2) spans a code of
length 56, dimension 19 and minimum distance 16. Same parameters
as the best known [56, 19, d ]2 code!

Description from M. Grassl’s page www.codetables.de based on
A. E. Brouwer’s tables:

Construction of a linear code [56, 19, 16] over GF (2):

1: [55, 21, 15] Cyclic Linear Code over GF (2). CyclicCode of length 55
with generating polynomial x34 +x31 +x29 +x28 +x26 +x23 +x19 +
x18 + x13 + x10 + x7 + x5 + x3 + x + 1.

2: [56, 21, 16] Linear Code over GF (2). ExtendCode [1] by 1.

3: [56, 19, 16] Linear Code over GF (2). Subcode of [2].
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Is the code generated by the third (56, 16, 18) design equivalent to a
known [56, 19, 16]2 code?
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Is the code generated by the third (56, 16, 18) design equivalent to a
known [56, 19, 16]2 code?

Problem: number of subcodes in step 3 is

[
21

19

]
2

= 733 006 703 275.
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Is the code generated by the third (56, 16, 18) design equivalent to a
known [56, 19, 16]2 code?

Problem: number of subcodes in step 3 is

[
21

19

]
2

= 733 006 703 275.

Idea: look at minimum weight words in the [56, 21, 16]2 code from step 2.
There are 5170 words of weigt 16; quasi-symmetric designs are equiva-
lent to b = 231 words pairwise intersecting in x = 4 or y = 8 coordi-
nates.

Computational tools: GAP package GUAVA

cliquer by P. Österg̊ard and S. Niskanen
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Is the code generated by the third (56, 16, 18) design equivalent to a
known [56, 19, 16]2 code?

Problem: number of subcodes in step 3 is

[
21

19

]
2

= 733 006 703 275.

Idea: look at minimum weight words in the [56, 21, 16]2 code from step 2.
There are 5170 words of weigt 16; quasi-symmetric designs are equiva-
lent to b = 231 words pairwise intersecting in x = 4 or y = 8 coordi-
nates.

Computational tools: GAP package GUAVA

cliquer by P. Österg̊ard and S. Niskanen

Thanks for your attention!


