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A Network for Multicast
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Three Unicasts in a Multicast Network
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Network Multicast Theorem

Conditions:

◮ Network is represented as a directed, acyclic graph.

◮ Edges have unit-capacity and parallel edges are allowed.

◮ There are h unit-rate information sources S1, . . . ,Sh.

◮ There are N receivers R1, . . . ,RN located at N distinct nodes.

◮ Between the sources and each receiver node,

◮ the number of edges in the min-cut is h (or equivalently)

◮ there are h edge-disjoint paths (Si,Rj) for 1 6 i 6 h.

Claim: There exists a multicast transmission scheme of rate h.

Moreover, multicast at rate h

◮ cannot always be achieved by routing, but

◮ can be achieved by allowing the nodes to linearly combine

their inputs over a sufficiently large finite field.
4 / 29



Network Multicast – Linear Combining

◮ Source Si emits σi which is an element of some finite field.

◮ Edges carry linear combinations of their parent node inputs.

◮ Consequently,

edges carry linear combinations of source symbols σi.

Network Coding Multicast Problem:

How should nodes combine their inputs to ensure that any h edges

observed by a receiver carry independent combinations of σi-s?
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Network Multicast – Example
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Network Multicast – Example
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Network Multicas – Example
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Network Multicast – Code Design

◮ Edges carry linear combinations of their parent node inputs;

{αk} are the coefficients used in these linear combinations.

◮ ρ
j
i is the symbol on the last edge of the path (Si,Rj) ⇒

Receiver j has to solve the following system of equations:









ρ
j
1
...

ρ
j
h









= Cj









σ1

...

σh









where the elements of matrix Cj are polynomials in {αk}.

The Code Design Problem:

Select {αk} so that all matrices C1 . . .CN are full rank.
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Network Multicast – Code Existence

◮ The goal is to select {αk} so that C1 . . .CN are full rank.

◮ Equivalently, the goal is to select {αk} so that

f({αk}) , det(C1) · · · det(CN) 6= 0.

Can such {αk} be found?

RLNC [Ho et al.]

Yes, by selecting {αk} uniformly at random from a “large filed”,

we will have the polynomial f({αk}) 6= 0 with “high probability”.

LIF [Jaggi et al.]

Yes, {αk} can be selected form Fq where q > N.

But, we don’t know of any networks for which q > O(
√
N) is required.
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Combination Network B(h,m)

A Popular Network With a Small-Alphabt Code
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B(h,m) has

◮ h information sources,

◮

(

m
h

)

receivers, and

◮ m bottlenecks.

Design a rate-h multicast!

Map {σj} to {yk} by an [m,h] Reed-Solomon code.

But, what if fewer than h sources are available at the bottlenecks?
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Coding Points

The multicast condition:

Between the sources and each receiver node,

◮ the number of edges in the min-cut is h (or equivalently)

◮ there are h edge-disjoint paths (Si,Rj) for 1 6 i 6 h.

Coding points are edges where paths from different sources merge.
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Local and Global Coding Vectors

◮ Edges carry linear combinations of their parent node inputs.

◮ {αk} are the local coding coefficients.

◮ Each edge e carries a linear combination of source symbols:

c1(e)σ1 + · · · + ch(e)σh =
[

c1(e) . . . ch(e)
]









σ1

...

σh









◮ [c1(e) . . . ch(e)] ∈ F
h
q is the global coding vector of edge e.
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Decoding for Receiver j

◮ ρ
j
i is the symbol on the last edge on the path (Si,Rj).

◮ c
j
i is the coding vector of the last edge on the path (Si,Rj).

◮ Cj is the matrix whose i-th row is cji.

◮ Receiver j has to solve the following system of equations:


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Network Multicast – Code Design

Select a coding vector for each edge e of the network so that

1. the matrices C1 . . .CN are full rank.

2. the coding vector of e is in the linear span of the coding

vectors of the input edges to the parent node of e.

The only edges of interest are coding points.
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Local and Global View
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Roughly speaking, we need to find a collection of vectors s.t.

some are in the span of others & some are linearly independent.

16 / 29



Minimal h-Multicast Graph Γ = (G, S,R)

Ingredients:

1. Directed, acyclic graph G with

◮ h source nodes S = S1, . . . , Sh
◮ nodes with in-degree d, 2 6 d 6 h.

2. Set of labels R = R1, . . . ,RN (receivers).

Multicast property (labeling rules):

1. Each Ri is used to label exactly h nodes.

Nodes can have multiple labels.

2. Nodes labeled by Ri are connectible to

the sources by h node-disjoint paths.

Minimality:

If an edge is removed, the multicast property is lost.

Example:

S1 S2

R1 R2

R2 R3

R1 R3
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Code Design Problem for Network Multicast

Select a vector in Fh
q for each node in G s.t.

1. Sj is assigned ej.

2. vectors of the h nodes sharing a receiver label

are linearly independent

3. the vector assigned to a node is in the span

of the vectors assigned to its parents.

We call such assignments network multicast codes.

Example:

[1 0] [0 1]

R1 R2

R2 R3 [1 1]

R1 R3 [1 α] or [0 1]

Can such selection of vectors be made? Over how small field?
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The Field Size?

Theorem [Fragouli & Soljanin ’06]:

◮ For networks with 2 sources and N receivers,

q > a = ⌊
√

2N − 7/4+ 1/2⌋

is sufficient, and, for some networks, necessary.

◮ For networks with h sources and N receivers,

q > a = N

is sufficient. (Proven even earlier a couple of times.)

We don’t have any examples where we need a > O(
√
N).
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Coding for Networks with Two Sources

◮ Let L be the following set of (q+ 1) vectors:

[0 1], [1 0], and [1αi] for 0 6 i 6 q− 2,

where α is a primitive element of Fq.

◮ Consider any two different vectors in L:

◮ they are linearly independent, and

◮ any vector in L is in their linear span.

=⇒ Vectors in L can be treated as colors.

Example:

[1 0] [0 1]

R1 R2

R2 R3 [1 1]

R1 R3 [1 α] or [0 1]
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Vertex Coloring and Code Design
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Field Size for Network with Two Sources
ℓ -The Chromatic Number of Ω

Claim: ℓ 6
√

2N− 7/4+ 1/2⌋ + 1

Elements of the Proof:

◮ Lemma: Every vertex in an Ω has degree at least two.

◮ Lemma: Every ℓ-chromatic graph has at least ℓ vertices of

degree at least ℓ− 1.

◮ For an Ω with n nodes, chromatic number ℓ, and ǫ edges:

1. ǫ > [ℓ(ℓ− 1) + (n − ℓ)2]/2 ← from the lemmas

2. ǫ 6 N + n− 2 ← receiver and flow edges

Recall that Fq provides q + 1 colors when h = 2.
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h > 2
We cannot dispose of geometry and just do combinatorics

Is there generalization of the coloring idea?

◮ We have used points on the projective line as colors.

◮ Con we use the points on arcs in PG(h− 1,q) as colors?

Yes, if each non-source node has h inputs.

Roughly speaking, we need to find a collection of vectors s.t.

some are in the span of others & some are linearly independent.

Are there counterparts to the “coloring graph” Ω?

E.g., matroids, finite geometry relations?
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Combination Network B(h,m)

A Popular Network With a Small-Alphabt Code
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A Distributed Combination Network
Fewer than h sources are available at the bottlenecks

S1 S2 S3

R1 R81

There are

◮ 3 information sources,

◮ 9 bottlenecks, and

◮

(

9
3

)

− 3 receivers.

Design a rate-3 multicast!

Only information that is locally available can be combined.

25 / 29



Non-Monotonicity
There may be a solution over Fq0

but not over Fq for some q > 0

Coding vectors for our example network:






a1 a2 a3 b1 b2 b3 0 0 0

c1 c2 c3 0 0 0 d1 d2 d3

︸ ︷︷ ︸

v1

0 0 0
︸ ︷︷ ︸

v2

e1 e2 e3
︸ ︷︷ ︸

v3

f1 f2 f3







All 3× 3 sub-matrices, except v1, v2, v3, should be non-singular.

In which fields Fq does a solution exist?

◮ No solution exists when q < 7.

◮ A solution exists for all q > 9.

◮ A solution exists for q = 7

◮ No solution exists for q = 8.
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What Would We Like To Do?
... short of solving the problem ...

Find relations ( equivalences ) with other problems, e.g.,

Something old :

Three problems of Segre in PG(h− 1,q)

1. What is the size g(h,q) of the maximal arc,

and which arcs have g(h,q) points?

2. For which q and h < q are all arcs with q+ 1 points equivalent?

3. What are the sizes of the complete arcs,

and what is the size of the second largest complete arc?

Something new :

constrained MDS codes, codes with locality constraints,

minimal multicast graph topologies vs. geometry of arcs.
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Who are We?

From left to right: Fragouli, Valdez, Manganiello, Halbawi, Soljanin, Anderson, Walker, Kaplan
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