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A Network for Multicast
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Three Unicasts in a Multicast Network



Network Multicast Theorem

Conditions:

\4

Network is represented as a directed, acyclic graph.

\4

Edges have unit-capacity and parallel edges are allowed.

v

There are h unit-rate information sources Sq, ..., Sh.

\4

Between the sources and each receiver node,

v

» the number of edges in the min-cut is h (or equivalently)
» there are h edge-disjoint paths (S;, Rj) for 1 <i < h.

Claim: There exists a multicast transmission scheme of rate h.
Moreover, multicast at rate h
» cannot always be achieved by routing, but

» can be achieved by allowing the nodes to linearly combine

their inputs over a sufficiently large finite field.

There are N receivers Ry, ..., RN located at N distinct nodes.
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Network Multicast — Linear Combining

» Source S; emits o; which is an element of some finite field.
» Edges carry linear combinations of their parent node inputs.

» Consequently,

edges carry linear combinations of source symbols o;.

Network Coding Multicast Problem:
How should nodes combine their inputs to ensure that any h edges

observed by a receiver carry independent combinations of oy-s?
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Network Multicast — Example
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Network Multicast — Example
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Network Multicas — Example
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Network Multicast — Code Design

» Edges carry linear combinations of their parent node inputs;

{otc} are the coefficients used in these linear combinations.

> pi is the symbol on the last edge of the path (S, R;) =
Receiver j has to solve the following system of equations:

where the elements of matrix C; are polynomials in {o}.

The Code Design Problem:
Select {a } so that all matrices Cy ... Cy are full rank.

29



Network Multicast — Code Existence

> The goal is to select {ot)} so that C;...Cy are full rank.

» Equivalently, the goal is to select {a} so that

f({o}) = det(Cy) - - - det(Cn) # 0.

Can such {o} be found?

RLNC [Ho et al]
Yes, by selecting {o} uniformly at random from a “large filed”,
we will have the polynomial f({ax}) # 0 with “high probability”.

LIF [Jaggi et al ]
Yes, {ou} can be selected form Fy where g > N.

But, we don’t know of any networks for which q > O(v/N) is required. J
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Combination Network B(h, m)
A Popular Network With a Small-Alphabt Code

B(h, m) has
» h information sources,
> (') receivers, and
» m bottlenecks.

Design a rate-h multicast!

Ry R

Map {oj} to {yi} by an [m, h] Reed-Solomon code.

But, what if fewer than h sources are available at the bottlenecks?

)

11/29



Coding Points

The multicast condition:

Between the sources and each receiver node,
» the number of edges in the min-cut is h (or equivalently)

> there are h edge-disjoint paths (Si, Rj) for 1 <i < h.

Coding points are edges where paths from different sources merge. |
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Local and Global Coding Vectors

v

Edges carry linear combinations of their parent node inputs.

v

{ok} are the local coding coefficients.

v

Each edge e carries a linear combination of source symbols:

01
ci(e)or + - +cn(e)on = [cile)...cn(e)]

Oh

> [ci(e)...cn(e)] € Fa‘ is the global coding vector of edge e.
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Decoding for Receiver j

> p{ is the symbol on the last edge on the path (Si, R;).

> ci is the coding vector of the last edge on the path (S;, Rj).

> Cj is the matrix whose i-th row is c]i.

» Receiver j has to solve the following system of equations:
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Network Multicast — Code Design

Select a coding vector for each edge e of the network so that
1. the matrices C; ... Cy are full rank.

2. the coding vector of e is in the linear span of the coding

vectors of the input edges to the parent node of e.

The only edges of interest are coding points.
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Local and Global View
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Roughly speaking, we need to find a collection of vectors s.t.

some are in the span of others & some are linearly independent.



Minimal h-Multicast Graph I' = (G, 8, R)
Ingredients:

1. Directed, acyclic graph G with
Example:
» h source nodes 8§ =S1,...,Sh

» nodes with in-degree d, 2 < d < h. S1 Sy

2. Set of labels R = Ry, ..., RN (receivers). e e

_ (labeling rules):

1. Each Ry is used to label exactly h nodes. @
Nodes can have multiple labels.

2. Nodes labeled by R; are connectible to
the sources by h node-disjoint paths.

If an edge is removed, the multicast property is lost.
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Code Design Problem for Network Multicast

Select a vector in Fz‘ for each node in G s.t.
1.
2.

We call such assignments network multicast codes. [1 o or [01]

Example:

vectors of the h nodes sharing a receiver label
are linearly independent

the vector assigned to a node is in the span @ (11]

of the vectors assigned to its parents.

(1 0] [0 1]

S; is assigned e;. e e

Can such selection of vectors be made? Over how small field?

J
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The Field Size?

Theorem [Fragouli & Soljanin '06]:

» For networks with 2 sources and N receivers,

q>a=|V2N—7/4+1/2]

is sufficient, and, for some networks, necessary.

» For networks with h sources and N receivers,
qgza=N

is sufficient. (Proven even earlier a couple of times.)

We don't have any examples where we need a > O(v/N).
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Coding for Networks with Two Sources

Example:

> Let £ be the following set of (q + 1) vectors: 1] 01]

01], [10], and 1] for 0 <i< q—2, e e

where o is a primitive element of IFy.

» Consider any two different vectors in £: @ 11]

» they are linearly independent, and

» any vector in £ is in their linear span.

. R [1 «f or [01]
— Vectors in £ can be treated as colors.
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Vertex Coloring and Code Design
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Field Size for Network with Two Sources
{ -The Chromatic Number of Q

Claim: €< /2N —7/4+1/2] +1
Elements of the Proof:
» Lemma: Every vertex in an Q has degree at least two.
» Lemma: Every {-chromatic graph has at least { vertices of
degree at least £ — 1.
» For an QO with n nodes, chromatic number £, and € edges:

1L.e>[f—1)+ (n—10)2]/2 < from the lemmas
2. e<N+n-2 + receiver and flow edges

Recall that [Fy provides q + 1 colors when h = 2.
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h>?2

We cannot dispose of geometry and just do combinatorics

Is there generalization of the coloring idea?

» We have used points on the projective line as colors.

» Con we use the points on arcs in PG(h — 1, q) as colors?

Yes, if each non-source node has h inputs.

Roughly speaking, we need to find a collection of vectors s.t.

some are in the span of others & some are linearly independent.

Are there counterparts to the “coloring graph” 7
E.g., matroids, finite geometry relations?
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Combination Network B(h, m)
A Popular Network With a Small-Alphabt Code

B(h, m) has
» h information sources,
> (') receivers, and
» m bottlenecks.

Design a rate-h multicast!

Ry R

Map {oj} to {yi} by an [m, h] Reed-Solomon code.

But, what if fewer than h sources are available at the bottlenecks?

)
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A Distributed Combination Network

Fewer than h sources are available at the bottlenecks

S1 S2 S3

There are
» 3 information sources,
» 9 bottlenecks, and
> (g) — 3 receivers.

Design a rate-3 multicast!
R1 Rs1

Only information that is locally available can be combined.
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Non-Monotonicity

There may be a solution over Fy, but not over IF for some q > 0

Coding vectors for our example network:

a; a» az|by by bg3| 0 0 O

c1 ¢ ¢33/ 0 0 O01]dy dy ds

0 0O O |e e e3|fy fo f3
Vi V2 V3

All 3 x 3 sub-matrices, except vi, V2, v3, should be non-singular.

4

In which fields IFq does a solution exist?

» No solution exists when q < 7.

v

A solution exists for all ¢ > 9.

v

A solution exists for q =7

» No solution exists for q = 8.
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What Would We Like To Do?

.. short of solving the problem ...
Find relations (lequivalences|) with other problems, e.g.,

Something old :
Three problems of Segre in PG(h—1, q)

1. What is the size g(h, q) of the maximal arc,
and which arcs have g(h, q) points?

2. For which q and h < q are all arcs with q 4+ 1 points equivalent?

3. What are the sizes of the complete arcs,
and what is the size of the second largest complete arc?

Something new :
constrained MDS codes, codes with locality constraints,

minimal multicast graph topologies vs. geometry of arcs.
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Who are We?

From left to right: Fragouli, Valdez, Manganiello, Halbawi, Soljanin, Anderson, Walker, Kaplan
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