Normalized tiling in \mathbb{Z}_p

Kristijan Tabak Rochester Institute of Technology kxtcad@rit.edu

NETCODE 16, April 2016
This work has been fully supported by Croatian Science Foundation under the project 1637 and COST action IC 1104

Let G be abelian group of order v. Let $\{D_i\}_{1}^{t}$ be a collection of (v, k, λ) difference sets such that

$$D_i D_i^{(-1)} = (k - \lambda) \cdot 1_G + \lambda G, \ i \in [t],$$

such that

$$G=\sum_{i=1}^t D_i+1.$$

Such collection is called a tiling.

Let G be abelian group of order v. Let $\{D_i\}_1^t$ be a collection of (v, k, λ) difference sets such that

$$D_i D_i^{(-1)} = (k - \lambda) \cdot 1_G + \lambda G, \ i \in [t],$$

such that

$$G=\sum_{i=1}^t D_i+1.$$

Such collection is called a tiling.

NTC conjecture claims that each D_i must be normalized. It means

$$\prod_{d\in D_i} d=1.$$

Let G be abelian group of order v. Let $\{D_i\}_1^t$ be a collection of (v, k, λ) difference sets such that

$$D_i D_i^{(-1)} = (k - \lambda) \cdot 1_G + \lambda G, \ i \in [t],$$

such that

$$G=\sum_{i=1}^t D_i+1.$$

Such collection is called a tiling.

NTC conjecture claims that each D_i must be normalized. It means

$$\prod_{d\in D_i} d=1.$$

Let's provide one example of tiling in \mathbb{Z}_{31} . Then for

$$\begin{split} X_1 &= \{1,5,11,24,25,27\}, X_2 = \{2,10,17,19,22,23\}, \\ X_3 &= \{3,4,7,13,15,20\}, \\ X_4 &= \{6,8,9,14,23,30\}, \ X_5 = \{12,16,18,21,28,29\}. \end{split}$$

Then

$$X_1 + X_2 + X_3 + X_4 + X_5 = \mathbb{Z}_{31} - 0_{\mathbb{Z}_{31}}$$

and each X_i is a (31, 6, 1) difference set.

Let's provide one example of tiling in \mathbb{Z}_{31} . Then for

$$X_1 = \{1, 5, 11, 24, 25, 27\}, X_2 = \{2, 10, 17, 19, 22, 23\},$$

 $X_3 = \{3, 4, 7, 13, 15, 20\},$
 $X_4 = \{6, 8, 9, 14, 23, 30\}, X_5 = \{12, 16, 18, 21, 28, 29\}.$

Then

$$X_1 + X_2 + X_3 + X_4 + X_5 = \mathbb{Z}_{31} - 0_{\mathbb{Z}_{31}}$$

and each X_i is a (31, 6, 1) difference set.

$\mathsf{Theorem}$

Let
$$G = \langle a \rangle \cong \mathbb{Z}_p$$
 and $D \in G(p, k, 1)_{DS}$ and $p > 3$. Then, there is $X \in G(p, k, 1)_{DS}$ such that $\prod_{x \in X} x = 1$.

Let's provide one example of tiling in \mathbb{Z}_{31} . Then for

$$\begin{aligned} X_1 &= \{1,5,11,24,25,27\}, X_2 &= \{2,10,17,19,22,23\}, \\ X_3 &= \{3,4,7,13,15,20\}, \\ X_4 &= \{6,8,9,14,23,30\}, \ X_5 &= \{12,16,18,21,28,29\}. \end{aligned}$$

Then

$$X_1 + X_2 + X_3 + X_4 + X_5 = \mathbb{Z}_{31} - 0_{\mathbb{Z}_{31}}$$

and each X_i is a (31, 6, 1) difference set.

$\mathsf{Theorem}$

Let
$$G = \langle a \rangle \cong \mathbb{Z}_p$$
 and $D \in G(p, k, 1)_{DS}$ and $p > 3$. Then, there is $X \in G(p, k, 1)_{DS}$ such that $\prod_{x \in X} x = 1$.

Corollary

(fixed \Rightarrow normalized) Let $D \in G(p, k, 1)_{DS}$, $p \in \Pi$ and $t \in [p-1]$. If $D^{(t)} = D$, then D is normalized.

Let $G = \langle a \rangle \cong \mathbb{Z}_p$ and $p \in \Pi$. Let $\{D_i\}_1^t$ is (p, k, 1)— tiling. Then

$$G = \sum_{i=1}^t D_i + 1$$
 and

- 11 t = k 1.
- 2 there is some $M \in \mathbb{N}$ such that $4p + 3 = (2M + 1)^2$,
- k = M + 1.
- $4 \sum \chi_j(D_i) = -1, \ \chi_j \in Hom(G,\mathbb{C}) \ and \ \chi_j(a) = \varepsilon^j, \ where$ $\varepsilon = e^{\frac{2\pi i}{p}}, \ j \in [p-1].$
- $|\chi_i(D_i)| = \sqrt{M}$.

Let $G = \langle a \rangle \cong \mathbb{Z}_p$ and $p \in \Pi$. Let $\{D_i\}_1^t$ is (p, k, 1)— tiling. Then

$$G = \sum_{i=1}^t D_i + 1$$
 and

- 11 t = k 1.
- 2 there is some $M \in \mathbb{N}$ such that $4p + 3 = (2M + 1)^2$,
- k = M + 1.
- $4 \sum \chi_j(D_i) = -1, \ \chi_j \in Hom(G,\mathbb{C}) \ and \ \chi_j(a) = \varepsilon^j, \ where$ $\varepsilon = e^{\frac{2\pi i}{p}}, \ j \in [p-1].$
- $|\chi_i(D_i)| = \sqrt{M}$.

Let
$$G=\langle a \rangle \cong \mathbb{Z}_{31}.$$
 Then $\{D_j\}_1^5$ is a tiling where $D_j \in G(31,6,1)_{DS}$ and $D_j = \sum_{i=1}^6 a^{\alpha_{ij}}$ where

$$\begin{bmatrix} \alpha_{i1} \\ \alpha_{i2} \\ \alpha_{i3} \\ \alpha_{i4} \\ \alpha_{i5} \end{bmatrix} = \begin{bmatrix} 1 & 5 & 11 & 24 & 25 & 27 \\ 2 & 10 & 17 & 19 & 22 & 23 \\ 3 & 4 & 7 & 13 & 15 & 20 \\ 6 & 8 & 9 & 14 & 26 & 30 \\ 12 & 16 & 18 & 21 & 28 & 29 \end{bmatrix}$$

Additionaly, we have for $(\varphi, \psi, \theta) \in Aut(G)^3$ given by $((\varphi(a), \psi(a), \theta(a))) = (a^{-1}, a^5, a^4)$ and $(o(\varphi), o(\psi), o(\theta)) = (2, 3, 5).$

Then $\varphi(D_i)$ is spreded arround, and $\psi(D_i) = D_i$, $i \in [5]$. Also $\theta(D_1) = D_3, \ \theta(D_2) = D_4, \ \theta(D_3) = D_5, \ \theta(D_4) = D_1, \ \theta(D_5) = D_2.$

Let
$$G=\langle a \rangle \cong \mathbb{Z}_{31}.$$
 Then $\{D_j\}_1^5$ is a tiling where $D_j \in G(31,6,1)_{DS}$ and $D_j = \sum_{i=1}^6 a^{\alpha_{ij}}$ where

$$\begin{bmatrix} \alpha_{i1} \\ \alpha_{i2} \\ \alpha_{i3} \\ \alpha_{i4} \\ \alpha_{i5} \end{bmatrix} = \begin{bmatrix} 1 & 5 & 11 & 24 & 25 & 27 \\ 2 & 10 & 17 & 19 & 22 & 23 \\ 3 & 4 & 7 & 13 & 15 & 20 \\ 6 & 8 & 9 & 14 & 26 & 30 \\ 12 & 16 & 18 & 21 & 28 & 29 \end{bmatrix}$$

Additionaly, we have for $(\varphi, \psi, \theta) \in Aut(G)^3$ given by $((\varphi(a), \psi(a), \theta(a))) = (a^{-1}, a^5, a^4)$ and $(o(\varphi), o(\psi), o(\theta)) = (2, 3, 5).$

Then $\varphi(D_i)$ is spreded arround, and $\psi(D_i) = D_i$, $i \in [5]$. Also $\theta(D_1) = D_3, \ \theta(D_2) = D_4, \ \theta(D_3) = D_5, \ \theta(D_4) = D_1, \ \theta(D_5) = D_2.$ Let $G=\langle a \rangle\cong \mathbb{Z}_{31}.$ Then $\{D_j\}_1^5$ is a tiling where $D_j\in G(31,6,1)_{DS}$ and $D_j=\sum_{i=1}^6 a^{\alpha_{ij}}$ where

$$\begin{bmatrix} \alpha_{i1} \\ \alpha_{i2} \\ \alpha_{i3} \\ \alpha_{i4} \\ \alpha_{i5} \end{bmatrix} = \begin{bmatrix} 1 & 5 & 11 & 24 & 25 & 27 \\ 2 & 10 & 17 & 19 & 22 & 23 \\ 3 & 4 & 7 & 13 & 15 & 20 \\ 6 & 8 & 9 & 14 & 26 & 30 \\ 12 & 16 & 18 & 21 & 28 & 29 \end{bmatrix}$$

Let $G=\langle a \rangle \cong \mathbb{Z}_{31}.$ Then $\{D_j\}_1^5$ is a tiling where $D_j \in G(31,6,1)_{DS}$ and $D_j = \sum_{i=1}^6 a^{\alpha_{ij}}$ where

$$\begin{bmatrix} \alpha_{i1} \\ \alpha_{i2} \\ \alpha_{i3} \\ \alpha_{i4} \\ \alpha_{i5} \end{bmatrix} = \begin{bmatrix} 1 & 5 & 11 & 24 & 25 & 27 \\ 2 & 10 & 17 & 19 & 22 & 23 \\ 3 & 4 & 7 & 13 & 15 & 20 \\ 6 & 8 & 9 & 14 & 26 & 30 \\ 12 & 16 & 18 & 21 & 28 & 29 \end{bmatrix}$$

Then $D_j=D_{j1}+D_{j2},\ j\in[5]$ and each D_{js} is normalized and for $D_{j1}=\sum_{k=1}^3a^{\beta_{jk1}},\ D_{j2}=\sum_{k=1}^3a^{\beta_{jk2}}$ where

Let $G=\langle a \rangle \cong \mathbb{Z}_{31}.$ Then $\{D_j\}_1^5$ is a tiling where $D_j \in G(31,6,1)_{DS}$ and $D_j = \sum_{i=1}^6 a^{\alpha_{ij}}$ where

$$\begin{bmatrix} \alpha_{i1} \\ \alpha_{i2} \\ \alpha_{i3} \\ \alpha_{i4} \\ \alpha_{i5} \end{bmatrix} = \begin{bmatrix} 1 & 5 & 11 & 24 & 25 & 27 \\ 2 & 10 & 17 & 19 & 22 & 23 \\ 3 & 4 & 7 & 13 & 15 & 20 \\ 6 & 8 & 9 & 14 & 26 & 30 \\ 12 & 16 & 18 & 21 & 28 & 29 \end{bmatrix}$$

Then $D_j=D_{j1}+D_{j2},\ j\in[5]$ and each D_{js} is normalized and for $D_{j1}=\sum_{k=1}^3a^{\beta_{jk1}},\ D_{j2}=\sum_{k=1}^3a^{\beta_{jk2}}$ where

$$[\beta_{jk1}]_{5\times3} = \begin{bmatrix} 27 & 24 & 11 \\ 23 & 22 & 17 \\ 20 & 7 & 4 \\ 30 & 26 & 6 \\ 29 & 21 & 12 \end{bmatrix}, \ [\beta_{jk2}]_{5\times3} = \begin{bmatrix} 25 & 5 & 1 \\ 19 & 2 & 10 \\ 15 & 13 & 3 \\ 14 & 9 & 8 \\ 28 & 16 & 18 \end{bmatrix},$$

$$[\beta_{jk1}]_{5\times3} = \begin{bmatrix} 27 & 24 & 11 \\ 23 & 22 & 17 \\ 20 & 7 & 4 \\ 30 & 26 & 6 \\ 29 & 21 & 12 \end{bmatrix}, \ [\beta_{jk2}]_{5\times3} = \begin{bmatrix} 25 & 5 & 1 \\ 19 & 2 & 10 \\ 15 & 13 & 3 \\ 14 & 9 & 8 \\ 28 & 16 & 18 \end{bmatrix},$$

Then φ maps them like

$$\varphi \sim \begin{bmatrix} D_{41} & D_{31} & D_{51} & D_{42} & D_{52} \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ D_{12} & D_{11} & D_{22} & D_{21} & D_{32} \end{bmatrix}$$

$$[\beta_{jk1}]_{5\times3} = \begin{bmatrix} 27 & 24 & 11 \\ 23 & 22 & 17 \\ 20 & 7 & 4 \\ 30 & 26 & 6 \\ 29 & 21 & 12 \end{bmatrix}, \ [\beta_{jk2}]_{5\times3} = \begin{bmatrix} 25 & 5 & 1 \\ 19 & 2 & 10 \\ 15 & 13 & 3 \\ 14 & 9 & 8 \\ 28 & 16 & 18 \end{bmatrix},$$

Then φ maps them like

$$\varphi \sim \begin{bmatrix} D_{41} & D_{31} & D_{51} & D_{42} & D_{52} \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ D_{12} & D_{11} & D_{22} & D_{21} & D_{32} \end{bmatrix}$$

Let $D \in G(31,6,1)_{DS}$ and $G = \langle a \rangle \cong \mathbb{Z}_{31}$. Let $\gamma \in Aut(G)$ such that $o(\gamma) = 5$ and $\{\gamma^i(D)\}$ mutually disjoint. Then

$$G=\sum_{i=0}^4 \gamma^i(D)+1,$$

thus a tiling.

Let $D \in G(31,6,1)_{DS}$ and $G = \langle a \rangle \cong \mathbb{Z}_{31}$. Let $\gamma \in Aut(G)$ such that $o(\gamma) = 5$ and $\{\gamma^i(D)\}$ mutually disjoint. Then

$$G=\sum_{i=0}^4 \gamma^i(D)+1,$$

thus a tiling.

Now, we introduce another notation.

$$TG(31,6,1) = \{\{D_j\}_1^5 \mid G = \sum_{j=1}^5 D_j + 1, \ D_j \in G(31,6,1)_{DS}\},$$

Let $D \in G(31,6,1)_{DS}$ and $G = \langle a \rangle \cong \mathbb{Z}_{31}$. Let $\gamma \in Aut(G)$ such that $o(\gamma) = 5$ and $\{\gamma^i(D)\}$ mutually disjoint. Then

$$G=\sum_{i=0}^4 \gamma^i(D)+1,$$

thus a tiling.

Now, we introduce another notation.

$$TG(31,6,1) = \{\{D_j\}_1^5 \mid G = \sum_{j=1}^5 D_j + 1, D_j \in G(31,6,1)_{DS}\},$$

$$TG_n(31,6,1) = \{\{D_i\}_1^5 \in TG(31,6,1) \mid D_i \in G(31,6,1)_{NDS}\}$$

Let $D \in G(31,6,1)_{DS}$ and $G = \langle a \rangle \cong \mathbb{Z}_{31}$. Let $\gamma \in Aut(G)$ such that $o(\gamma) = 5$ and $\{\gamma^i(D)\}$ mutually disjoint. Then

$$G=\sum_{i=0}^4 \gamma^i(D)+1,$$

thus a tiling.

Now, we introduce another notation.

$$TG(31,6,1) = \{\{D_j\}_1^5 \mid G = \sum_{j=1}^5 D_j + 1, D_j \in G(31,6,1)_{DS}\},$$

$$TG_n(31,6,1) = \{\{D_i\}_1^5 \in TG(31,6,1) \mid D_i \in G(31,6,1)_{NDS}\}$$

Let
$$X = \{D_j\}_1^5 \in TG(31,6,1)$$
 in $G = \langle a \rangle \cong \mathbb{Z}_{31}$. If $\mathbb{Z}_5 \hookrightarrow X$, then $X \in TG_n(31,6,1)$

 \mathbb{Z}_5 acts?

Let $X = \{D_i\}_{1}^5 \in TG(31,6,1)$ in $G = \langle a \rangle \cong \mathbb{Z}_{31}$. If $\mathbb{Z}_5 \hookrightarrow X$, then $X \in TG_n(31, 6, 1)$

 \mathbb{Z}_5 acts?

Take $X = \{D_i\}_{1}^5 \in TG(31, 6, 1)$ and $D_i \in G(31, 6, 1)_{DS}$. We know that

$$D_j^{\psi}=a^{\alpha_j}D_j,\ j\in[5].$$

If $\mathbb{Z}_5 \hookrightarrow X$ then $X^{\theta} = X$ for $\theta \in Aut(G)$ and $a^{\theta} = a^4$. We also know that $o(\theta) = 5$.

Let $X = \{D_j\}_1^5 \in TG(31,6,1)$ in $G = \langle a \rangle \cong \mathbb{Z}_{31}$. If $\mathbb{Z}_5 \hookrightarrow X$, then $X \in TG_n(31,6,1)$

 \mathbb{Z}_5 acts?

Take $X = \{D_j\}_1^5 \in TG(31, 6, 1)$ and $D_j \in G(31, 6, 1)_{DS}$. We know that

$$D_j^{\psi}=a^{\alpha_j}D_j,\ j\in[5].$$

If $\mathbb{Z}_5 \hookrightarrow X$ then $X^{\theta} = X$ for $\theta \in Aut(G)$ and $a^{\theta} = a^4$. We also know that $o(\theta) = 5$. Now we have

$$X^{\psi} = \{D_j^{\psi}\}_{j=1}^5 = \{(D_1^{\theta^j})^{\psi}\}_{j=1}^5 = \{(D_1^{\psi})^{\theta^j}\}_{j=1}^5.$$

Let
$$X=\{D_j\}_1^5\in TG(31,6,1)$$
 in $G=\langle a\rangle\cong \mathbb{Z}_{31}.$ If $\mathbb{Z}_5\hookrightarrow X,$ then $X\in TG_n(31,6,1)$

Take $X = \{D_j\}_1^5 \in TG(31, 6, 1)$ and $D_j \in G(31, 6, 1)_{DS}$. We know that

$$D_j^{\psi}=a^{\alpha_j}D_j,\ j\in[5].$$

If $\mathbb{Z}_5 \hookrightarrow X$ then $X^{\theta} = X$ for $\theta \in Aut(G)$ and $a^{\theta} = a^4$. We also know that $o(\theta) = 5$. Now we have

$$X^{\psi} = \{D_j^{\psi}\}_{j=1}^5 = \{(D_1^{\theta^j})^{\psi}\}_{j=1}^5 = \{(D_1^{\psi})^{\theta^j}\}_{j=1}^5.$$

On the other hand, we have

$$egin{aligned} D_j^\psi &= (D_1^{ heta j})^\psi = (D_1^\psi)^{ heta j} = (a^{lpha_1}D_1)^{ heta j} = \ &= (a^{lpha_1})^{ heta j}D_1^{ heta j} = a^{lpha_j}D_j = a^{lpha_j}D_1^{ heta j}. \end{aligned}$$

Therefore, we get

Let
$$X=\{D_j\}_1^5\in TG(31,6,1)$$
 in $G=\langle a\rangle\cong \mathbb{Z}_{31}.$ If $\mathbb{Z}_5\hookrightarrow X,$ then $X\in TG_n(31,6,1)$

Take $X = \{D_j\}_1^5 \in TG(31, 6, 1)$ and $D_j \in G(31, 6, 1)_{DS}$. We know that

$$D_j^{\psi}=a^{\alpha_j}D_j,\ j\in[5].$$

If $\mathbb{Z}_5 \hookrightarrow X$ then $X^{\theta} = X$ for $\theta \in Aut(G)$ and $a^{\theta} = a^4$. We also know that $o(\theta) = 5$. Now we have

$$X^{\psi} = \{D_j^{\psi}\}_{j=1}^5 = \{(D_1^{\theta^j})^{\psi}\}_{j=1}^5 = \{(D_1^{\psi})^{\theta^j}\}_{j=1}^5.$$

On the other hand, we have

$$egin{aligned} D_j^\psi &= (D_1^{ heta j})^\psi = (D_1^\psi)^{ heta j} = (a^{lpha_1}D_1)^{ heta j} = \ &= (a^{lpha_1})^{ heta j}D_1^{ heta j} = a^{lpha_j}D_j = a^{lpha_j}D_1^{ heta j}. \end{aligned}$$

Therefore, we get

$$(a^{\alpha_1})^{\theta^j}D_i=a^{\alpha_j}D_i.$$

Since $(a^{\alpha_1})^{\theta^j}D_i \in Dev(D_i)$ and $a^{\alpha_j}D_i \in Dev(D_i)$, it means that they represent the same block of underling symmetric design, therefore representatives are equal. So, we get

$$(a^{\alpha_1})^{\theta^j}=a^{\alpha_j},\ j\in[5].$$

$$(a^{\alpha_1})^{\theta^j}D_j=a^{\alpha_j}D_j.$$

Since $(a^{\alpha_1})^{\theta^j}D_j \in Dev(D_j)$ and $a^{\alpha_j}D_j \in Dev(D_j)$, it means that they represent the same block of underling symmetric design, therefore representatives are equal. So, we get

$$(a^{\alpha_1})^{\theta^j}=a^{\alpha_j},\ j\in[5].$$

Now, put j=1 in previous equation. We get $(a^{\alpha_1})^{\theta}=a^{\alpha_1}$. Then $4\alpha_1\equiv\alpha_1\pmod{31}$, so $\alpha_1\equiv0\pmod{31}$. Hence, $a^{\alpha_1}=1$. Now, we have

$$a^{\alpha_j}=(a^{\alpha_1})^{\theta^j}=1^{\theta^j}=1.$$

Now we have

$$D_j^{\psi}=a^{\alpha_j}D_j=D_j.$$

$$(a^{\alpha_1})^{\theta^j}D_j=a^{\alpha_j}D_j.$$

Since $(a^{\alpha_1})^{\theta^j}D_j \in Dev(D_j)$ and $a^{\alpha_j}D_j \in Dev(D_j)$, it means that they represent the same block of underling symmetric design, therefore representatives are equal. So, we get

$$(a^{\alpha_1})^{\theta^j}=a^{\alpha_j},\ j\in[5].$$

Now, put j=1 in previous equation. We get $(a^{\alpha_1})^{\theta}=a^{\alpha_1}$. Then $4\alpha_1\equiv\alpha_1\pmod{31}$, so $\alpha_1\equiv0\pmod{31}$. Hence, $a^{\alpha_1}=1$. Now, we have

$$a^{\alpha_j}=(a^{\alpha_1})^{\theta^j}=1^{\theta^j}=1.$$

Now we have

$$D_j^{\psi}=a^{\alpha_j}D_j=D_j.$$

we get $D_j \in G(31,6,1)_{NDS}$ and this yields to $X \in TG_n(31,6,1)$.

$$(a^{\alpha_1})^{\theta^j}D_j=a^{\alpha_j}D_j.$$

Since $(a^{\alpha_1})^{\theta^j}D_i \in Dev(D_i)$ and $a^{\alpha_j}D_i \in Dev(D_i)$, it means that they represent the same block of underling symmetric design, therefore representatives are equal. So, we get

$$(a^{\alpha_1})^{\theta^j}=a^{\alpha_j},\ j\in[5].$$

Now, put j=1 in previous equation. We get $(a^{\alpha_1})^{\theta}=a^{\alpha_1}$. Then $4\alpha_1 \equiv \alpha_1 \pmod{31}$, so $\alpha_1 \equiv 0 \pmod{31}$. Hence, $a^{\alpha_1} = 1$. Now, we have

$$a^{\alpha_j}=(a^{\alpha_1})^{\theta^j}=1^{\theta^j}=1.$$

Now we have

$$D_j^{\psi}=a^{\alpha_j}D_j=D_j.$$

we get $D_i \in G(31,6,1)_{NDS}$ and this yields to $X \in TG_n(31,6,1)$.

It is clear that for any difference set $A \in G(31, 6, 1)_{DS}$ we can write $A = aA_0$ where $N(A_0) = 1$. We define $N(D) = \prod d$. $d \in D$

It is clear that for any difference set $A \in G(31, 6, 1)_{DS}$ we can write $A = aA_0$ where $N(A_0) = 1$. We define $N(D) = \prod d$. Then $d \in D$

we would get
$$A_0 = a^{-1}A$$
 and $1 = N(A_0) = \prod_{g \in A} a^{-1}g = a^{-6}N(A)$.

This gives us $a^6 = N(A)$, and after taking 26th power we get $a = (N(A))^{26}$.

It is clear that for any difference set $A \in G(31, 6, 1)_{DS}$ we can write $A = aA_0$ where $N(A_0) = 1$. We define $N(D) = \prod d$. Then $d \in D$

we would get
$$A_0 = a^{-1}A$$
 and $1 = N(A_0) = \prod_{g \in A} a^{-1}g = a^{-6}N(A)$.

This gives us $a^6 = N(A)$, and after taking 26th power we get $a = (N(A))^{26}$.

Now, take $\{A, B, C, D, E\} \in TG(31, 6, 1)$. Put

It is clear that for any difference set $A \in G(31,6,1)_{DS}$ we can write $A=aA_0$ where $N(A_0)=1$. We define $N(D)=\prod_{d\in D}d$. Then

we would get
$$A_0=a^{-1}A$$
 and $1=N(A_0)=\prod_{g\in A}a^{-1}g=a^{-6}N(A).$

This gives us $a^6 = N(A)$, and after taking 26th power we get $a = (N(A))^{26}$.

Now, take $\{A, B, C, D, E\} \in TG(31, 6, 1)$. Put

$$G^* = aA_0 + bB_0 + cC_0 + dD_0 + eE_0,$$

where

$$N(A_0) = N(B_0) = N(C_0) = N(D_0) = N(E_0) = 1.$$

It is clear that for any difference set $A \in G(31, 6, 1)_{DS}$ we can write $A = aA_0$ where $N(A_0) = 1$. We define $N(D) = \prod d$. Then $d \in D$

we would get
$$A_0=a^{-1}A$$
 and $1=N(A_0)=\prod_{g\in A}a^{-1}g=a^{-6}N(A).$

This gives us $a^6 = N(A)$, and after taking 26th power we get $a = (N(A))^{26}$.

Now, take $\{A, B, C, D, E\} \in TG(31, 6, 1)$. Put

$$G^* = aA_0 + bB_0 + cC_0 + dD_0 + eE_0,$$

where

$$N(A_0) = N(B_0) = N(C_0) = N(D_0) = N(E_0) = 1.$$

Therefore, because, for example $A^{\psi} \in \mathcal{D}ev(D)$ we get

$$A_0^{\psi}=A_0,\ B_0^{\psi}=B_0,\ C_0^{\psi}=C_0,\ D_0^{\psi}=D_0,\ E_0^{\psi}=E_0.$$

It is clear that for any difference set $A \in G(31, 6, 1)_{DS}$ we can write $A = aA_0$ where $N(A_0) = 1$. We define $N(D) = \prod d$. Then $d \in D$

we would get
$$A_0=a^{-1}A$$
 and $1=N(A_0)=\prod_{g\in A}a^{-1}g=a^{-6}N(A).$

This gives us $a^6 = N(A)$, and after taking 26th power we get $a = (N(A))^{26}$.

Now, take $\{A, B, C, D, E\} \in TG(31, 6, 1)$. Put

$$G^* = aA_0 + bB_0 + cC_0 + dD_0 + eE_0,$$

where

$$N(A_0) = N(B_0) = N(C_0) = N(D_0) = N(E_0) = 1.$$

Therefore, because, for example $A^{\psi} \in \mathcal{D}ev(D)$ we get

$$A_0^{\psi}=A_0,\ B_0^{\psi}=B_0,\ C_0^{\psi}=C_0,\ D_0^{\psi}=D_0,\ E_0^{\psi}=E_0.$$

Thus, we can write

$$\begin{split} A_0 &= a_1 + a_1^{\psi} + a_1^{\psi^2} + a_2 + a_2^{\psi} + a_2^{\psi^2} = a_1^{\langle \psi \rangle} + a_2^{\langle \psi \rangle}, \\ B_0 &= b_1 + b_1^{\psi} + b_1^{\psi^2} + b_2 + b_2^{\psi} + b_2^{\psi^2} = b_1^{\langle \psi \rangle} + b_2^{\langle \psi \rangle}, \\ C_0 &= c_1 + c_1^{\psi} + c_1^{\psi^2} + c_2 + c_2^{\psi} + c_2^{\psi^2} = c_1^{\langle \psi \rangle} + c_2^{\langle \psi \rangle}, \\ D_0 &= d_1 + d_1^{\psi} + d_1^{\psi^2} + d_2 + d_2^{\psi} + d_2^{\psi^2} = d_1^{\langle \psi \rangle} + d_2^{\langle \psi \rangle}, \\ E_0 &= e_1 + e_1^{\psi} + e_1^{\psi^2} + e_2 + e_2^{\psi} + e_2^{\psi^2} = e_1^{\langle \psi \rangle} + e_2^{\langle \psi \rangle}, \end{split}$$

Thus, we can write

$$\begin{split} A_0 &= a_1 + a_1^{\psi} + a_1^{\psi^2} + a_2 + a_2^{\psi} + a_2^{\psi^2} = a_1^{\langle \psi \rangle} + a_2^{\langle \psi \rangle}, \\ B_0 &= b_1 + b_1^{\psi} + b_1^{\psi^2} + b_2 + b_2^{\psi} + b_2^{\psi^2} = b_1^{\langle \psi \rangle} + b_2^{\langle \psi \rangle}, \\ C_0 &= c_1 + c_1^{\psi} + c_1^{\psi^2} + c_2 + c_2^{\psi} + c_2^{\psi^2} = c_1^{\langle \psi \rangle} + c_2^{\langle \psi \rangle}, \\ D_0 &= d_1 + d_1^{\psi} + d_1^{\psi^2} + d_2 + d_2^{\psi} + d_2^{\psi^2} = d_1^{\langle \psi \rangle} + d_2^{\langle \psi \rangle}, \\ E_0 &= e_1 + e_1^{\psi} + e_1^{\psi^2} + e_2 + e_2^{\psi} + e_2^{\psi^2} = e_1^{\langle \psi \rangle} + e_2^{\langle \psi \rangle}, \end{split}$$

Therefore, we can write

$$G^* = a \left[a_1^{\langle \psi \rangle} + a_2^{\langle \psi \rangle} \right] + b \left[b_1^{\langle \psi \rangle} + b_2^{\langle \psi \rangle} \right] +$$

$$+ c \left[c_1^{\langle \psi \rangle} + c_2^{\langle \psi \rangle} \right] + d \left[d_1^{\langle \psi \rangle} + d_2^{\langle \psi \rangle} \right] +$$

$$= e \left[e_1^{\langle \psi \rangle} + e_2^{\langle \psi \rangle} \right]$$

Thus, we can write

$$\begin{split} A_0 &= a_1 + a_1^{\psi} + a_1^{\psi^2} + a_2 + a_2^{\psi} + a_2^{\psi^2} = a_1^{\langle \psi \rangle} + a_2^{\langle \psi \rangle}, \\ B_0 &= b_1 + b_1^{\psi} + b_1^{\psi^2} + b_2 + b_2^{\psi} + b_2^{\psi^2} = b_1^{\langle \psi \rangle} + b_2^{\langle \psi \rangle}, \\ C_0 &= c_1 + c_1^{\psi} + c_1^{\psi^2} + c_2 + c_2^{\psi} + c_2^{\psi^2} = c_1^{\langle \psi \rangle} + c_2^{\langle \psi \rangle}, \\ D_0 &= d_1 + d_1^{\psi} + d_1^{\psi^2} + d_2 + d_2^{\psi} + d_2^{\psi^2} = d_1^{\langle \psi \rangle} + d_2^{\langle \psi \rangle}, \\ E_0 &= e_1 + e_1^{\psi} + e_1^{\psi^2} + e_2 + e_2^{\psi} + e_2^{\psi^2} = e_1^{\langle \psi \rangle} + e_2^{\langle \psi \rangle}, \end{split}$$

Therefore, we can write

$$G^* = a \left[a_1^{\langle \psi \rangle} + a_2^{\langle \psi \rangle} \right] + b \left[b_1^{\langle \psi \rangle} + b_2^{\langle \psi \rangle} \right] +$$

$$+ c \left[c_1^{\langle \psi \rangle} + c_2^{\langle \psi \rangle} \right] + d \left[d_1^{\langle \psi \rangle} + d_2^{\langle \psi \rangle} \right] +$$

$$= e \left[e_1^{\langle \psi \rangle} + e_2^{\langle \psi \rangle} \right]$$

$$(a_1^{\langle\psi\rangle})^{\theta} = (a_1 + a_1^{\psi} + a_1^{\psi^2})^{\theta} = a_1^{\theta} + (a_1^{\theta})^{\psi} + (a_1^{\theta})^{\psi^2} = (a_1^{\theta})^{\langle\psi\rangle}.$$
 (1)

$$(a_1^{\langle\psi
angle})^{ heta} = (a_1 + a_1^{\psi} + a_1^{\psi^2})^{ heta} = a_1^{ heta} + (a_1^{ heta})^{\psi} + (a_1^{ heta})^{\psi^2} = (a_1^{ heta})^{\langle\psi
angle}. \quad (1)$$

Another important note is that from

$$a[a_1^{\langle\psi\rangle}+a_2^{\langle\psi\rangle}]=b[b_1^{\langle\psi\rangle}+b_2^{\langle\psi\rangle}]$$
 we get $a^6=b^6$, which means $a=b$. On the other hand, if $aa_1^{\langle\psi\rangle}+bb_1^{\langle\psi\rangle}=cc_1^{\langle\psi\rangle}+dd_1^{\langle\psi\rangle}$ we get $a^3b^3=c^3d^3$, thus $ab=cd$.

$$(a_1^{\langle \psi \rangle})^{ heta} = (a_1 + a_1^{\psi} + a_1^{\psi^2})^{ heta} = a_1^{ heta} + (a_1^{ heta})^{\psi} + (a_1^{ heta})^{\psi^2} = (a_1^{ heta})^{\langle \psi \rangle}. \quad (1)$$

Another important note is that from

$$a[a_1^{\langle\psi\rangle}+a_2^{\langle\psi\rangle}]=b[b_1^{\langle\psi\rangle}+b_2^{\langle\psi\rangle}]$$
 we get $a^6=b^6$, which means $a=b$. On the other hand, if $aa_1^{\langle\psi\rangle}+bb_1^{\langle\psi\rangle}=cc_1^{\langle\psi\rangle}+dd_1^{\langle\psi\rangle}$ we get $a^3b^3=c^3d^3$, thus $ab=cd$. Now, because of (1) θ acts on

$$a_1^{\langle\psi\rangle},\ a_2^{\langle\psi\rangle},\dots,e_1^{\langle\psi\rangle},\ e_2^{\langle\psi\rangle}.$$
 Let us introduce notation

$$1_{\mathsf{a}} \equiv \mathsf{a}\mathsf{a}_1^{\langle\psi\rangle}, \ 2_{\mathsf{a}} \equiv \mathsf{a}\mathsf{a}_2^{\langle\psi\rangle}, \ldots, 1_{\mathsf{e}} \equiv \mathsf{e}\mathsf{e}_1^{\langle\psi\rangle}, \ 2_{\mathsf{e}} \equiv \mathsf{e}\mathsf{e}_2^{\langle\psi\rangle}.$$

Basically, θ acts on

$$1_a$$
, 2_a , 1_b , 2_b , 1_c , 2_c , 1_d , 2_d , 1_e , 2_e .

$$(a_1^{\langle \psi \rangle})^{ heta} = (a_1 + a_1^{\psi} + a_1^{\psi^2})^{ heta} = a_1^{ heta} + (a_1^{ heta})^{\psi} + (a_1^{ heta})^{\psi^2} = (a_1^{ heta})^{\langle \psi \rangle}. \quad (1)$$

Another important note is that from

$$a[a_1^{\langle\psi\rangle}+a_2^{\langle\psi\rangle}]=b[b_1^{\langle\psi\rangle}+b_2^{\langle\psi\rangle}]$$
 we get $a^6=b^6$, which means $a=b$. On the other hand, if $aa_1^{\langle\psi\rangle}+bb_1^{\langle\psi\rangle}=cc_1^{\langle\psi\rangle}+dd_1^{\langle\psi\rangle}$ we get $a^3b^3=c^3d^3$, thus $ab=cd$. Now, because of (1) θ acts on

$$a_1^{\langle\psi\rangle},\ a_2^{\langle\psi\rangle},\dots,e_1^{\langle\psi\rangle},\ e_2^{\langle\psi\rangle}.$$
 Let us introduce notation

$$1_{\mathsf{a}} \equiv \mathsf{a}\mathsf{a}_1^{\langle\psi\rangle}, \ 2_{\mathsf{a}} \equiv \mathsf{a}\mathsf{a}_2^{\langle\psi\rangle}, \ldots, 1_{\mathsf{e}} \equiv \mathsf{e}\mathsf{e}_1^{\langle\psi\rangle}, \ 2_{\mathsf{e}} \equiv \mathsf{e}\mathsf{e}_2^{\langle\psi\rangle}.$$

Basically, θ acts on

$$1_a$$
, 2_a , 1_b , 2_b , 1_c , 2_c , 1_d , 2_d , 1_e , 2_e .

$$\mathsf{a}\mathsf{a}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{a}\mathsf{a}_2^{\langle\psi\rangle}, \ \ \mathsf{a}\mathsf{a}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{b}\mathsf{b}_1^{\langle\psi\rangle}, \ \ \mathsf{b}\mathsf{b}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{d}\mathsf{d}_2^{\langle\psi\rangle}, \ \ \mathsf{d}\mathsf{d}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{e}\mathsf{e}_2^{\langle\psi\rangle}.$$

For example, if one orbit is $1_a 2_a 1_b 2_d 2_e$ it means

$$\mathsf{a}\mathsf{a}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{a}\mathsf{a}_2^{\langle\psi\rangle}, \ \ \mathsf{a}\mathsf{a}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{b}\mathsf{b}_1^{\langle\psi\rangle}, \ \ \mathsf{b}\mathsf{b}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{d}\mathsf{d}_2^{\langle\psi\rangle}, \ \ \mathsf{d}\mathsf{d}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{e}\mathsf{e}_2^{\langle\psi\rangle}.$$

Now, from $(aa_2^{\langle\psi\rangle})^{\theta} = bb_1^{\langle\psi\rangle}$ we get $a^{3\theta} = b^3$. Similarly

 $a^{\theta}=b,\ b^{\theta}=d,\ d^{\theta}=e,\ e^{\theta}=a.$ Thus $a^{\theta^4}=a,$ hence a=1. Then also b = d = e = 1. From other orbit where we have c similarly we get c=1. This means that every difference set is normalized.

For example, if one orbit is $1_a 2_a 1_b 2_d 2_e$ it means

$$\mathsf{a}\mathsf{a}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{a}\mathsf{a}_2^{\langle\psi\rangle}, \ \ \mathsf{a}\mathsf{a}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{b}\mathsf{b}_1^{\langle\psi\rangle}, \ \ \mathsf{b}\mathsf{b}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{d}\mathsf{d}_2^{\langle\psi\rangle}, \ \ \mathsf{d}\mathsf{d}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{e}\mathsf{e}_2^{\langle\psi\rangle}.$$

Now, from $(aa_2^{\langle\psi\rangle})^{\theta} = bb_1^{\langle\psi\rangle}$ we get $a^{3\theta} = b^3$. Similarly

 $a^{\theta}=b,\ b^{\theta}=d,\ d^{\theta}=e,\ e^{\theta}=a.$ Thus $a^{\theta^4}=a,$ hence a=1. Then also b = d = e = 1. From other orbit where we have c similarly we get c=1. This means that every difference set is normalized.

Now, if we have for example orbit of a type $1_a 2_b 1_c 2_d 2_e$ (all letters are included) then up to reordering we have

Now, if we have for example orbit of a type $1_a 2_b 1_c 2_d 2_e$ (all letters are included) then up to reordering we have

$$\mathsf{aa}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{bb}_2^{\langle\psi\rangle}, \; \mathsf{bb}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{cc}_1^{\langle\psi\rangle}, \; \mathsf{cc}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{dd}_2^{\langle\psi\rangle}, \; \mathsf{dd}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{ee}_2^{\langle\psi\rangle},$$

Now, if we have for example orbit of a type $1_a 2_b 1_c 2_d 2_e$ (all letters are included) then up to reordering we have

$$\mathsf{a}\mathsf{a}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{b}\mathsf{b}_2^{\langle\psi\rangle}, \ \mathsf{b}\mathsf{b}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{c}\mathsf{c}_1^{\langle\psi\rangle}, \ \mathsf{c}\mathsf{c}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{d}\mathsf{d}_2^{\langle\psi\rangle}, \ \mathsf{d}\mathsf{d}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{e}\mathsf{e}_2^{\langle\psi\rangle},$$

Then it means, up to some reordering $1_s \leftrightarrow 2_s$, where $s \in \{a, b, c, d, e\}$ we get θ acting in an orbit of length 5, and then by same approach as in Theorem $\mathbb{Z}_5 \hookrightarrow X$ we get a = b = c = d = e = 1. The same goes if θ has 5 or 10 fixed 'points'.

Now, if we have for example orbit of a type $1_a 2_b 1_c 2_d 2_e$ (all letters are included) then up to reordering we have

$$\mathsf{a}\mathsf{a}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{b}\mathsf{b}_2^{\langle\psi\rangle}, \ \mathsf{b}\mathsf{b}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{c}\mathsf{c}_1^{\langle\psi\rangle}, \ \mathsf{c}\mathsf{c}_1^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{d}\mathsf{d}_2^{\langle\psi\rangle}, \ \mathsf{d}\mathsf{d}_2^{\langle\psi\rangle} \xrightarrow{\theta} \mathsf{e}\mathsf{e}_2^{\langle\psi\rangle},$$

Then it means, up to some reordering $1_s \leftrightarrow 2_s$, where $s \in \{a, b, c, d, e\}$ we get θ acting in an orbit of length 5, and then by same approach as in Theorem $\mathbb{Z}_5 \hookrightarrow X$ we get a = b = c = d = e = 1. The same goes if θ has 5 or 10 fixed 'points'.

Thank You!