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Introduction Example

Let G be abelian group of order v. Let {D;}! be a collection of
(v, k, \) difference sets such that

DD = (k—\)-1¢ + AG, i € [t],
such that

t
G=) Di+1.
i=1

Such collection is called a tiling.
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Introduction Example Zs acts? TG(31,6,1) = TG,(31,6,1)

Let's provide one example of tiling in Z3;. Then for
X1 =1{1,5,11,24,25,27}, X, = {2,10, 17,19, 22,23},
X3 ={3,4,7,13,15,20},
Xs = {6,8,9,14,23,30}, Xs = {12,16,18,21,28,29}.

Then
X1+ Xo+ X3+ Xq+ Xg =731 —0231

and each X; is a (31,6, 1) difference set.
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X € G(p, k,1)ps such that H x = 1.
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Theorem
Let G = (a) = Zp and D € G(p, k,1)ps and p > 3. Then, there is

X € G(p, k,1)ps such that H x = 1.
xeX

| A\

Corollary

(fixed = normalized) Let D € G(p, k,1)ps, p € N and
t € [p—1]. If DY) = D, then D is normalized.

16



TG(31,6,1) = TG,(31,6, 1)

Introduction Example

Let G = (a) 2 Zp and p € . Let {D;}} is (p, k,1)— tiling. Then

t
G:§:Dp+1md

i=1
Bt—k—1,
there is some M € N such that 4p + 3 = (2M + 1),
Bk=M+1,
k
ZXJ-(D,-) = —1, x; € Hom(G,C) and x;(a) = &/, where
i=1

2mi

€:€T,j€[p—1]-

(D) = VM.
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Introduction D Zs acts? TG(31,6,1) = TG,(31,6,1)

Lemma

Let G = (a) = Zs31. Then {D;}3 is a tiling where
6

Dj € G(31,6,1)ps and D; = Z a%i where
i=1

a1 1 5 11 24 25 27
) 2 10 17 19 22 23
Q3| = 3 4 7 13 15 20
Qi 6 8 9 14 26 30
ajs 12 16 18 21 28 29

Additionaly, we have for (p,1,0) € Aut(G)3 given by
(((a),9(a),0(a))) = (a~1, 2% a*) and

(O((p), 0(¢)a 0(9)) = (27 3, 5)‘

Then ¢(Dj) is spreded arround, and v(D;) = D;, j € [5]. Also
0(D1) = D3, 0(D,) = Dy, 6(D3) = Ds, 6(Ds) = Dy, 6(Ds) = D,.
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27 24 11 25 5 1
23 22 17 19 2 10
Bialsxs =20 7 4|, [Bielsxs= |15 13 3],
30 26 6 14 9 8
29 21 12 28 16 18

Ds1 D31 Dsi Ds> Dsp

e~ { { { {
Dio Di1 Dx» Doy Dz



Introduction Example Zs acts? TG(31,6,1) = TG,(31,6,1)

27 24 11 25 5 1
23 22 17 19 2 10
Bialsxs =20 7 4|, [Bielsxs= |15 13 3],
30 26 6 14 9 8
29 21 12 28 16 18

Ds1 D31 Dsi Ds> Dsp

e~ { { { {
Dio Di1 Dx» Doy Dz



Introduction Example Zs acts? TG(31,6,1) = TG,(31,6,1)

Let D € G(31,6,1)ps and G = (a) = Z31. Let v € Aut(G) such
that o(vy) = 5 and {7/(D)} mutually disjoint. Then

thus a tiling.
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j=1
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X € TGx(31,6,1)




Introduction Example Zs acts? TG(31,6,1) = TG,(31,6,1)

Let X = {D;}; € TG(31,6,1) in G = (a) = Z31. If Zs — X, then
X € TGx(31,6,1)

Take X = {D;}3 € TG(31,6,1) and D; € G(31,6,1)ps. We know
that

DY = a%Dj, j € [5]-

If Zs — X then X% = X for 6 € Aut(G) and a’ = a*. We also
know that o(f) = 5.
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(aal)ﬂj Dj = ao‘f Dj.

Since (ao‘l)ij € Dev(Dj) and a® D; € Dev(D;), it means that
they represent the same block of underling symmetric design,
therefore representatives are equal. So, we get

(1) = a%, j € [5].
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Introduction Example Zs acts? TG(31,6,1) = TGy(31,6,1)

It is clear that for any difference set A € G(31,6,1)ps we can
write A = aAg where N(Ap) = 1. We define N(D) = H d.
deD
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deD
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Example

Thus, we can write

A0:31+a7ib+a7f

2
+ ax+ a,

(4

—i—ag’

2
=a

(¥)
1

TG(31,6,1) = TG,(31,6,1)

+ aéw,

Bo=by+bY + bV + by + bY + bY = b 4 b§V,

Co:c1+cfb+cf’

2 P 2
+ot+tog +6 =g

(¥)

I C2<¢>

J

Do=ci+d’+d¥ +dp+df +df =d¥ +d¥,

Eoze1+ef—i—eff

2
+e +e

(%
2

+ &

¥

2
= é

()
1

ol e2<¢>

Y

12 /16



Introduction Example Zs acts? TG(31,6,1) = TGy(31,6,1)

Thus, we can write
Ao=ar+ a8 +a¥ +a+af +af' =al 4 ¥
Bo= b1+ bY + b7 + by + bY + 6% = b 4 b,
Co=C1+C;D+CiZJ2+C2+Cg)+Cg)2:C1< >+c2<w>,
Do=di+df +d +do+df +df =df¥) +df¥,
Bo—ea+el+e +eo+el +ef =o'+,

Therefore, we can write

G* = afal? + a4 b6 + 6] +
+ c|d?+ ) +d|[dfP + ] +

= e[ei >—I—eé q
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Introduction Example TG(31,6,1) = TGy(31,6,1)

Notice that

2 2
(o)’ = (a1 +af +4}")" = af + () + () = (&)™ (1)
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Introduction Example Zs acts? TG(31,6,1) = TGy(31,6,1)

Notice that
0 2\6 0 0 0\? 0
() = (a1 + af +a}")! = af + (af)¥ + ()" = (D). (1)
Another important note is that from

a[aYm + aéw] = b[me + béw] we get a® = b°, which means
a = b. On the other hand, if aa§¢> + bb:<lw> = ccl(w> + ddlw> we get
a3h3 = c3d3, thus ab = cd.
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Introduction Example TG(31,6,1) = TGy(31,6,1)

For example, if one orbit is 1,2;15242, it means

aa§w> i> aag’w, aaéw i> bme, bbyl}> i dd2<w>, ddzw> i> eeéw.
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For example, if one orbit is 1,2;15242, it means
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Now, from (aa”’)? = bb{*) we get 2% = b3. Similarly
ad¥=b, b0 =d, d=e, & =a. Thus a%* = a, hence a=1. Then

also b = d = e = 1. From other orbit where we have c similarly we
get ¢ = 1. This means that every difference set is normalized.
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Now, if we have for example orbit of a type 1,251.242, (all letters
are included) then up to reordering we have
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Then it means, up to some reordering 1¢ <+ 25, where
se€{a,b,c,d, e} we get 6 acting in an orbit of length 5, and then
by same approach as in Theorem Zs < X we get
a=b=c=d=e=1. The same goes if 6 has 5 or 10 fixed
'points’.
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Example ; ? TG(31,6,1) = TGy(3

Thank You!
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