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Introduction

o Classical designs and their (projective) g-analogs can both be viewed
as designs in matroids.
@ Not much known on g-analogs of designs.

» construction of such designs by Thomas (1987) and others
» Steiner system S5(2,3,13) has been found (2012)
» existence of Fano plane 5(2,3,7) still unknown

@ Another natural matroid is given by the point sets in general position
of an affine space.

@ What is the relationship between the affine and the projective
g-analogs of designs?

@ Do there exist affine Steiner systems?
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© A short recap of matroid theory

e Matroid examples from finite geometry

© Affine and projective designs

@ Observations and questions
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Matroids — an abstraction of linear independence
Definition
A matroid is a pair (S,Z), where S is a finite set and Z is a nonempty
family of independent subsets of S satisfying

(i) if l€Z and JC I, then J € T;

(ii) (exchange axiom) if I,J € T and |l| < |J|, then thereis x € J\ |
with JU{x} € Z.

Examples

@ The free matroid (S, P(S)), where S is a finite set.

@ The vector matroid (V,Z), where Z is the family of all linearly
independent subsets of a finite vector space V.

© The graphic matroid (E,Z), where G = (V,E) is a graph, E C (‘2/)
and a subset of E is independent iff it contains no cycle.

v

For any matroid M = (S,Z) and any subset X of S
the restriction M| X := (X,Z NP(X)) is again a matroid.
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Rank and basis
Let M =(S,Z) be a matroid.

Definition
The rank p(X) of a subset X of S is the cardinality of a maximal
independent subset of X. By the exchange axiom this is well-defined.

The closure operator cl: P(S) — P(S) is defined by

d(X) == {x €S| p(X U{x}) = p(X)}.

A subset X of S satisfying X = cl(X) is called a flat, or a k-flat if
its rank is k. For each flat X and all x,y € S\ X there holds the
exchange property: y € cl(XU{x}) = xec(XU{y}).

A subset X of S is called generating if cl(X) =S.
maximal independent = independent generating = minimal generating
Such a set is called basis.
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Designs in matroids

A perfect matroid design (PMD) is a matroid M of some rank n for
which any k-flat has the same cardinality fx, where 0 < k < n.
Examples

@ The free matroid (S, P(S)), where |S| = n.

@ The vector matroid (V,Z), where dim V = n.

Geometrization: Let M be a PMD. By deleting elements x € S such
that {x} ¢ Z and identifying elements x,y € S such that {x,y} ¢ Z,
we get again a PMD M’.

Example: vector space ~» projective space.

Definition
A t-(n, k,\) design in M is a collection B of k-flats in M such that
each t-flat in M is contained in exactly A members of B.

Any t-(n, k,\) design in M is also an s-(n, k, \s) design for s < t.
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9 Matroid examples from finite geometry
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PMDs from incidence geometry

Let G = (P, L, ) be an incidence space, with point set P,
line set £ and incidence relation | CP x L. A set U of
points is called a linear set if (PQ) C U for any two points
P,Q of U. The span cl(X) of a subset X of P is the
smallest linear set containing X'. A set of points B is
independent if P ¢ cl(B\ {P}) for all P € B.

Let G be a projective space or an affine space. Then:
@ For any linear set U and points P, Q ¢ U the exchange property
QecdUUU{P}) = Pec(dU{Q}) holds.
e Then Mg := (P,ZI) is a matroid, where Z = { independent sets }.
@ One defines dimG = |B| — 1, where B is a basis. Thus: geometric
dimension = matroid rank — 1.

@ All t-dimensional subspaces have the same number of points, i.e.,
the matroid of independent sets is a perfect matroid design.
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Designs in finite geometries

Let G = (P, L, ) be a projective or an affine space of dimension v — 1.

Definition

A t-(v, k,\) design in G is a collection B of (k — 1)-dimensional
subspaces of G, called blocks, such that every (t — 1)-dimensional
subspace of G is contained in exactly A\ blocks.

If G =P is a projective space we refer to a t-(v, k, \) projective design,
and in case G = A is an affine space to an t-(v, k, \) affine design.

If A =1 we speak of a (projective or affine) Steiner system S(t, k, v).
Let P = P(V) be the projective space associated to a vector space V.
Then a t-(v, k, \) projective design in P corresponds to a t-(v, k, \)

subspace design in V/, i.e., a collection B of k-dim. subspaces of V such
that each t-dim. subspace of V is contained in exactly A members of 5.
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© Affine and projective designs
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Affine designs from projective designs

Let V' be a vector space and let T be its group of translations.

Theorem
Suppose that B is a t-(v, k, \) subspace design in V, then
TB:={aU|UeB,ac T} isan (t+1)-(v+1,k+1,)\) affine design.

Conversely, if D is an (t +1)-(v+ 1,k + 1, \) affine design in A(V),
then Dy :={W €D |0€ W} isa t-(v,k,\) subspace design.

t-(v, k, \) (t+1)-(v+1,k+1,))
projective designs affine designs
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Relations with classical designs

Proposition

For any 2-(v, k, \) projective design of order q there is a 2- ([vlg, [Klq, A)

classical design, [d]q := qq__ll

For any 2-(v, k, ) affine design of order g there is a 2-(g"~ 1, g1, \)
classical design; for any 3-(v, k, A) affine design of order g = 2 there is
a 3-(2v71,2k=1 \) classical design.

Corollary (cf. [EV1L, Th. 4])

For any 2-(v, k,\) projective design of order 2 there is a 3-(2",2K, \)
classical design. In particular, for any S(2,3,v) projective Steiner system
we obtain a classical S(3,8,2) Steiner system.
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@ Observations and questions
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Observations

e For any k, ¢ there exist a projective Steiner system S(1, k, k{),
namely a spread.
Hence there exist an affine Steiner system S(2,k + 1, k¢ +1).
This includes (k = 2) Steiner triple systems 5(2,3,2¢ + 1) and
the “affine g-analog” of the Fano plane 5(2,3,7).

@ Let us examine the affine Steiner system S(2,3,7) for g = 2.
This is a family B of planes in A(IFS) such that each line is
contained in exactly one plane in 5.

How many lines in A(FS$)? Answer: 2016.
The size of B is ¢ - 2016 = 16 - 21 = 336.
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Possible application in random network coding

Instead of relaying a linear combination
propagate an affine combination.

|

n
w = Zi:l )\,'V,'
where 37 A\ =1

The affine dimension is submodular, i.e.,
dim(XVY)+dim(XAY) < dmX+dimY.

Can be extended to a metric d by d(X,Y) :=dim(XV Y)—dimX.
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Final remarks

@ There is an affine Steiner system S(2,3,7) invariant under the
Singer cycle of size 63 and which has 273 parallel classes.

» Used in [EV11, Lem. 6] to construct a 2-dim. spaces covering code
in Grassy(7,3) of size 399.

@ Is there an affine Steiner system S(2,3,7) which is skew, i.e.,
with no pair of parallel planes?

> If yes, then a new (7,3,2), subspace code of size 336 is found.
> If no, then the non-existence of the projective g-analog of the
Fano plane 5(2,3,7) would be proven.
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